Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/11453 |
Resumo: | A Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e generalizada para medir a distância entre instâncias de dados e protótipos. A distância proposta tem quatro casos especiais. O primeiro caso é a distância Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O segundo caso é uma distância intervalar baseada em protótipos que modela subregiões não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O último caso permite à distância modelar classes desbalanceadas, compostas de subregiões de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de dados intervalares reais são usados nesses experimentos e seus resultados mostram a utilidade de uma distância localmente ponderada. |
| id |
UFPE_9479dc3fda8c4906333093315f18d9ab |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/11453 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalaresAnálise de Dados SimbólicosLearning Vector QuantizationDistância PonderadaA Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e generalizada para medir a distância entre instâncias de dados e protótipos. A distância proposta tem quatro casos especiais. O primeiro caso é a distância Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O segundo caso é uma distância intervalar baseada em protótipos que modela subregiões não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O último caso permite à distância modelar classes desbalanceadas, compostas de subregiões de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de dados intervalares reais são usados nesses experimentos e seus resultados mostram a utilidade de uma distância localmente ponderada.Universidade Federal de PernambucoSouza, Renata Maria Cardoso Rodrigues de Silva Filho, Telmo de Menezes e2015-03-09T14:01:45Z2015-03-09T14:01:45Z2013-02-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/11453porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T19:53:52Zoai:repositorio.ufpe.br:123456789/11453Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T19:53:52Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| title |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| spellingShingle |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares Silva Filho, Telmo de Menezes e Análise de Dados Simbólicos Learning Vector Quantization Distância Ponderada |
| title_short |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| title_full |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| title_fullStr |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| title_full_unstemmed |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| title_sort |
Uma abordagem adaptativa de learning vector quantization para classificação de dados intervalares |
| author |
Silva Filho, Telmo de Menezes e |
| author_facet |
Silva Filho, Telmo de Menezes e |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Souza, Renata Maria Cardoso Rodrigues de |
| dc.contributor.author.fl_str_mv |
Silva Filho, Telmo de Menezes e |
| dc.subject.por.fl_str_mv |
Análise de Dados Simbólicos Learning Vector Quantization Distância Ponderada |
| topic |
Análise de Dados Simbólicos Learning Vector Quantization Distância Ponderada |
| description |
A Análise de Dados Simbólicos lida com tipos de dados complexos, capazes de modelar a variabilidade interna dos dados e dados imprecisos. Dados simbólicos intervalares surgem naturalmente de valores como variação de temperatura diária, pressão sanguínea, entre outros. Esta dissertação introduz um algoritmo de Learning Vector Quantization para dados simbólicos intervalares, que usa uma distância Euclidiana intervalar ponderada e generalizada para medir a distância entre instâncias de dados e protótipos. A distância proposta tem quatro casos especiais. O primeiro caso é a distância Euclidiana intervalar e tende a modelar classes e clusters com formas esféricas. O segundo caso é uma distância intervalar baseada em protótipos que modela subregiões não-esféricas e de tamanhos similares dentro das classes. O terceiro caso permite à distância lidar com subregiões não-esféricas e de tamanhos variados dentro das classes. O último caso permite à distância modelar classes desbalanceadas, compostas de subregiões de várias formas e tamanhos. Experimentos são feitos para avaliar os desempenhos do Learning Vector Quantization intervalar proposto, usando todos os quatro casos da distância proposta. Três conjuntos de dados intervalares sintéticos e um conjunto de dados intervalares reais são usados nesses experimentos e seus resultados mostram a utilidade de uma distância localmente ponderada. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-02-27 2015-03-09T14:01:45Z 2015-03-09T14:01:45Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/11453 |
| url |
https://repositorio.ufpe.br/handle/123456789/11453 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041940358791168 |