Boosted projections and low cost transfer learning applied to smart surveillance
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ESBF-B8VGA3 |
Resumo: | Computer vision is an important area related to understanding the world through images. It can be used in biometrics, by verifying whether a given face is of a certain identity, used to look for crime perpetrators in an airport blacklist, used in human-machine interactions and other goals. Deep learning methods have become ubiquitous in computer vision achieving many breakthroughs, making possible for machines, for instance, to verify if two photos belong to the same person with human-level skill. This work tackles two computer vision problems applied to surveillance. First, we explore deep learning methods for computer vision in the task of face verification and second, we explore dimensionality reduction techniques for the task of detection. |
| id |
UFMG_a84e2a2a2a4c37176c874424680c0792 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESBF-B8VGA3 |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Boosted projections and low cost transfer learning applied to smart surveillanceVisão por ComputadorComputaçãoAprendizado do computadorTeoria da estimativaDimensionality ReductionComputer VisionMachine LearningDeep LearningComputer vision is an important area related to understanding the world through images. It can be used in biometrics, by verifying whether a given face is of a certain identity, used to look for crime perpetrators in an airport blacklist, used in human-machine interactions and other goals. Deep learning methods have become ubiquitous in computer vision achieving many breakthroughs, making possible for machines, for instance, to verify if two photos belong to the same person with human-level skill. This work tackles two computer vision problems applied to surveillance. First, we explore deep learning methods for computer vision in the task of face verification and second, we explore dimensionality reduction techniques for the task of detection.Universidade Federal de Minas Gerais2019-08-13T20:49:42Z2025-09-08T23:26:51Z2019-08-13T20:49:42Z2018-02-23info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-B8VGA3Ricardo Barbosa Klossinfo:eu-repo/semantics/openAccessengreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T23:26:51Zoai:repositorio.ufmg.br:1843/ESBF-B8VGA3Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T23:26:51Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Boosted projections and low cost transfer learning applied to smart surveillance |
| title |
Boosted projections and low cost transfer learning applied to smart surveillance |
| spellingShingle |
Boosted projections and low cost transfer learning applied to smart surveillance Ricardo Barbosa Kloss Visão por Computador Computação Aprendizado do computador Teoria da estimativa Dimensionality Reduction Computer Vision Machine Learning Deep Learning |
| title_short |
Boosted projections and low cost transfer learning applied to smart surveillance |
| title_full |
Boosted projections and low cost transfer learning applied to smart surveillance |
| title_fullStr |
Boosted projections and low cost transfer learning applied to smart surveillance |
| title_full_unstemmed |
Boosted projections and low cost transfer learning applied to smart surveillance |
| title_sort |
Boosted projections and low cost transfer learning applied to smart surveillance |
| author |
Ricardo Barbosa Kloss |
| author_facet |
Ricardo Barbosa Kloss |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Ricardo Barbosa Kloss |
| dc.subject.por.fl_str_mv |
Visão por Computador Computação Aprendizado do computador Teoria da estimativa Dimensionality Reduction Computer Vision Machine Learning Deep Learning |
| topic |
Visão por Computador Computação Aprendizado do computador Teoria da estimativa Dimensionality Reduction Computer Vision Machine Learning Deep Learning |
| description |
Computer vision is an important area related to understanding the world through images. It can be used in biometrics, by verifying whether a given face is of a certain identity, used to look for crime perpetrators in an airport blacklist, used in human-machine interactions and other goals. Deep learning methods have become ubiquitous in computer vision achieving many breakthroughs, making possible for machines, for instance, to verify if two photos belong to the same person with human-level skill. This work tackles two computer vision problems applied to surveillance. First, we explore deep learning methods for computer vision in the task of face verification and second, we explore dimensionality reduction techniques for the task of detection. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-02-23 2019-08-13T20:49:42Z 2019-08-13T20:49:42Z 2025-09-08T23:26:51Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ESBF-B8VGA3 |
| url |
https://hdl.handle.net/1843/ESBF-B8VGA3 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414022715310080 |