Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Gutoski, Matheus
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: http://repositorio.utfpr.edu.br/jspui/handle/1/3171
Resumo: Automatic video surveillance is becoming a topic of great importance in the current world. Surveillance cameras in private and public spaces greatly outnumber the humans available for performing the observation task. This hinders the effectiveness of the cameras since the footage is often used much after the event has occurred, rather than allowing for quick corrective action based on real-time detection of events. However, the task of devising robust automatic surveillance systems is a rather difficult one. This high degree of difficulty is associated with the problem of building models able to understand human semantics. Humans have the innate ability to observe an ongoing event and judge its implications, which then leads to decision making. Simulating this understanding in a machine, even to the slightest degree, has become a real challenge in recent research. Computer Vision, Machine Learning, and Deep Learning are fields of study deeply connected to this issue. Together, these fields have recently achieved impressive results across a wide array of vision-related tasks, and provide methods and tools that can be used for the automatic video surveillance problem. In this work, the problem of automatic surveillance is approached from an anomaly detection perspective. It consists of learning a model of normality from videos previously labeled as normal by human observers and then using this model for detecting anomalies. To achieve this goal, the task is divided into two main subtasks: feature extraction and classification. The contributions of this work are mainly related to the feature extraction process, in which two methods based on Deep Learning were proposed. The first method is based on transferring knowledge from a completely unrelated task to video anomaly detection. The idea is to investigate the extent of the generalization capacity of a model, by using it for performing a completely new and unexpected task. The second method is based on learning a feature extractor that extracts compact feature representations from surveillance video datasets. This method was investigated under the hypothesis that creating compact clusters in the feature space may improve the classification performance. Classification is performed by One-Class Support Vector Machines in both methods. Results have shown that the first method had a performance similar to state-of-the-art methods, which leads to the conclusion that the generalization capacity of some Deep Learning models can be extended to different tasks. The results using the second method have corroborated to the compactness hypothesis, in which an increase in classification performance was obtained after introducing compactness. In general, it is possible to conclude that both methods show great promise for enhancing the feature extraction process, and can be valuable contributions towards robust automatic video anomaly detection systems.
id UTFPR-12_109fea2f24ed78266c7695698e8fbd07
oai_identifier_str oai:repositorio.utfpr.edu.br:1/3171
network_acronym_str UTFPR-12
network_name_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository_id_str
spelling Learning and transfer of feature extractors for automatic anomaly detection in surveillance videosAprendizagem e transferência de extratores de características para detecção automática de anomalias em vídeos de segurançaComputadores - Medidas de segurançaAprendizado do computadorVideovigilânciaSistemas de reconhecimento de padrõesVisão por computadorMétodos de simulaçãoComputer securityMachine learningVideo surveillancePattern recognition systemsComputer visionSimulation methodsCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOEngenharia ElétricaAutomatic video surveillance is becoming a topic of great importance in the current world. Surveillance cameras in private and public spaces greatly outnumber the humans available for performing the observation task. This hinders the effectiveness of the cameras since the footage is often used much after the event has occurred, rather than allowing for quick corrective action based on real-time detection of events. However, the task of devising robust automatic surveillance systems is a rather difficult one. This high degree of difficulty is associated with the problem of building models able to understand human semantics. Humans have the innate ability to observe an ongoing event and judge its implications, which then leads to decision making. Simulating this understanding in a machine, even to the slightest degree, has become a real challenge in recent research. Computer Vision, Machine Learning, and Deep Learning are fields of study deeply connected to this issue. Together, these fields have recently achieved impressive results across a wide array of vision-related tasks, and provide methods and tools that can be used for the automatic video surveillance problem. In this work, the problem of automatic surveillance is approached from an anomaly detection perspective. It consists of learning a model of normality from videos previously labeled as normal by human observers and then using this model for detecting anomalies. To achieve this goal, the task is divided into two main subtasks: feature extraction and classification. The contributions of this work are mainly related to the feature extraction process, in which two methods based on Deep Learning were proposed. The first method is based on transferring knowledge from a completely unrelated task to video anomaly detection. The idea is to investigate the extent of the generalization capacity of a model, by using it for performing a completely new and unexpected task. The second method is based on learning a feature extractor that extracts compact feature representations from surveillance video datasets. This method was investigated under the hypothesis that creating compact clusters in the feature space may improve the classification performance. Classification is performed by One-Class Support Vector Machines in both methods. Results have shown that the first method had a performance similar to state-of-the-art methods, which leads to the conclusion that the generalization capacity of some Deep Learning models can be extended to different tasks. The results using the second method have corroborated to the compactness hypothesis, in which an increase in classification performance was obtained after introducing compactness. In general, it is possible to conclude that both methods show great promise for enhancing the feature extraction process, and can be valuable contributions towards robust automatic video anomaly detection systems.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES)A vigilância automática de vı́deos de segurança está se tornando um tema de grande importância no mundo atual. A quantidade de câmeras de vigilância em locais públicos e privados supera amplamente o número de humanos disponı́veis para executar a tarefa de observação. Isto reduz a eficácia das câmeras, uma vez que as imagens de segurança geralmente são utilizadas após o ocorrido, em vez de permitir ações corretivas rápidas com base na detecção de eventos em tempo real. No entanto, a tarefa de conceber sistemas robustos de vigilância automática é bastante árdua. Este alto grau de dificuldade está associado ao problema da construção de modelos capazes de compreender a semântica humana. Os seres humanos têm a capacidade inata de observar um evento em andamento e julgar suas implicações, o que leva à tomada de decisões. Simular este entendimento em uma máquina, mesmo em um nı́vel simplificado, tornou-se um verdadeiro desafio na pesquisa recente. Visão Computacional, Aprendizagem de Máquina e Aprendizagem Profunda são áreas de estudo relacionadas à esta questão. Juntas, estas áreas alcançaram recentemente resultados impressionantes em uma ampla gama de tarefas relacionadas à visão, e fornecem métodos e ferramentas que podem ser usados para o problema de vigilância automática de vı́deos de segurança. Neste trabalho, o problema da vigilância automática é abordado a partir de uma perspectiva de detecção de anomalias. Para isto, um modelo de normalidade é aprendido a partir de vı́deos previamente rotulados como normais por observadores humanos. Este modelo é então usando para detectar anomalias. Para alcançar este objetivo, a tarefa é dividida em duas subtarefas principais: extração de caracterı́sticas e classificação. As contribuições deste trabalho estão principalmente relacionadas ao processo de extração de caracterı́sticas, onde foram propostos dois métodos baseados em Aprendizagem Profunda. O primeiro método baseia-se na transferência de conhecimento de uma tarefa completamente independente para a detecção de anomalias em vı́deos de segurança. A ideia é investigar a extensão da capacidade de generalização de um modelo, usando-o para executar uma tarefa completamente nova e inesperada. O segundo método é baseado em aprender um extrator de caracterı́sticas que extrai representações compactas dos vı́deos de segurança. Este método foi investigado sob a hipótese de que a criação de grupos compactos no espaço de caracterı́sticas pode levar a um maior desempenho de classificação. A classificação é realizada por Máquinas de Vetores Suporte de uma classe em ambos os métodos. Os resultados mostram que o primeiro método apresentou desempenho semelhante aos métodos considerados estado da arte, o que leva à conclusão de que a capacidade de generalização de alguns modelos de Aprendizagem Profunda pode ser estendida para diferentes tarefas. Os resultados usando o segundo método corroboraram com a hipótese de compacidade, onde um ganho no desempenho da classificação foi obtido após tornar as representações compactas. Em geral, é possı́vel concluir que ambos os métodos se mostram promissores para melhorar o processo de extração de caracterı́sticas e podem ser importantes contribuições para sistemas robustos de detecção automática de anomalias em vı́deos de segurança.Universidade Tecnológica Federal do ParanáCuritibaBrasilPrograma de Pós-Graduação em Engenharia Elétrica e Informática IndustrialUTFPRLopes, Heitor Silvériohttp://lattes.cnpq.br/4045818083957064Lazzaretti, André Eugêniohttp://lattes.cnpq.br/7649611874688878Lopes, Heitor SilvérioArruda, Lucia Valeria Ramos deBritto Jr, Alceu de SouzaChidambaram, ChidambaramGutoski, Matheus2018-05-21T19:00:16Z2018-05-21T19:00:16Z2018-04-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfGUTOSKI, Matheus. Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos. 2018. 82 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2018.http://repositorio.utfpr.edu.br/jspui/handle/1/3171enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))instname:Universidade Tecnológica Federal do Paraná (UTFPR)instacron:UTFPR2018-05-21T19:00:16Zoai:repositorio.utfpr.edu.br:1/3171Repositório InstitucionalPUBhttp://repositorio.utfpr.edu.br:8080/oai/requestriut@utfpr.edu.br || sibi@utfpr.edu.bropendoar:2018-05-21T19:00:16Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)false
dc.title.none.fl_str_mv Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
Aprendizagem e transferência de extratores de características para detecção automática de anomalias em vídeos de segurança
title Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
spellingShingle Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
Gutoski, Matheus
Computadores - Medidas de segurança
Aprendizado do computador
Videovigilância
Sistemas de reconhecimento de padrões
Visão por computador
Métodos de simulação
Computer security
Machine learning
Video surveillance
Pattern recognition systems
Computer vision
Simulation methods
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Engenharia Elétrica
title_short Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
title_full Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
title_fullStr Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
title_full_unstemmed Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
title_sort Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos
author Gutoski, Matheus
author_facet Gutoski, Matheus
author_role author
dc.contributor.none.fl_str_mv Lopes, Heitor Silvério
http://lattes.cnpq.br/4045818083957064
Lazzaretti, André Eugênio
http://lattes.cnpq.br/7649611874688878
Lopes, Heitor Silvério
Arruda, Lucia Valeria Ramos de
Britto Jr, Alceu de Souza
Chidambaram, Chidambaram
dc.contributor.author.fl_str_mv Gutoski, Matheus
dc.subject.por.fl_str_mv Computadores - Medidas de segurança
Aprendizado do computador
Videovigilância
Sistemas de reconhecimento de padrões
Visão por computador
Métodos de simulação
Computer security
Machine learning
Video surveillance
Pattern recognition systems
Computer vision
Simulation methods
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Engenharia Elétrica
topic Computadores - Medidas de segurança
Aprendizado do computador
Videovigilância
Sistemas de reconhecimento de padrões
Visão por computador
Métodos de simulação
Computer security
Machine learning
Video surveillance
Pattern recognition systems
Computer vision
Simulation methods
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Engenharia Elétrica
description Automatic video surveillance is becoming a topic of great importance in the current world. Surveillance cameras in private and public spaces greatly outnumber the humans available for performing the observation task. This hinders the effectiveness of the cameras since the footage is often used much after the event has occurred, rather than allowing for quick corrective action based on real-time detection of events. However, the task of devising robust automatic surveillance systems is a rather difficult one. This high degree of difficulty is associated with the problem of building models able to understand human semantics. Humans have the innate ability to observe an ongoing event and judge its implications, which then leads to decision making. Simulating this understanding in a machine, even to the slightest degree, has become a real challenge in recent research. Computer Vision, Machine Learning, and Deep Learning are fields of study deeply connected to this issue. Together, these fields have recently achieved impressive results across a wide array of vision-related tasks, and provide methods and tools that can be used for the automatic video surveillance problem. In this work, the problem of automatic surveillance is approached from an anomaly detection perspective. It consists of learning a model of normality from videos previously labeled as normal by human observers and then using this model for detecting anomalies. To achieve this goal, the task is divided into two main subtasks: feature extraction and classification. The contributions of this work are mainly related to the feature extraction process, in which two methods based on Deep Learning were proposed. The first method is based on transferring knowledge from a completely unrelated task to video anomaly detection. The idea is to investigate the extent of the generalization capacity of a model, by using it for performing a completely new and unexpected task. The second method is based on learning a feature extractor that extracts compact feature representations from surveillance video datasets. This method was investigated under the hypothesis that creating compact clusters in the feature space may improve the classification performance. Classification is performed by One-Class Support Vector Machines in both methods. Results have shown that the first method had a performance similar to state-of-the-art methods, which leads to the conclusion that the generalization capacity of some Deep Learning models can be extended to different tasks. The results using the second method have corroborated to the compactness hypothesis, in which an increase in classification performance was obtained after introducing compactness. In general, it is possible to conclude that both methods show great promise for enhancing the feature extraction process, and can be valuable contributions towards robust automatic video anomaly detection systems.
publishDate 2018
dc.date.none.fl_str_mv 2018-05-21T19:00:16Z
2018-05-21T19:00:16Z
2018-04-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv GUTOSKI, Matheus. Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos. 2018. 82 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2018.
http://repositorio.utfpr.edu.br/jspui/handle/1/3171
identifier_str_mv GUTOSKI, Matheus. Learning and transfer of feature extractors for automatic anomaly detection in surveillance videos. 2018. 82 f. Dissertação (Mestrado em Engenharia Elétrica e Informática Industrial) - Universidade Tecnológica Federal do Paraná, Curitiba, 2018.
url http://repositorio.utfpr.edu.br/jspui/handle/1/3171
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
publisher.none.fl_str_mv Universidade Tecnológica Federal do Paraná
Curitiba
Brasil
Programa de Pós-Graduação em Engenharia Elétrica e Informática Industrial
UTFPR
dc.source.none.fl_str_mv reponame:Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
instname:Universidade Tecnológica Federal do Paraná (UTFPR)
instacron:UTFPR
instname_str Universidade Tecnológica Federal do Paraná (UTFPR)
instacron_str UTFPR
institution UTFPR
reponame_str Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
collection Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT))
repository.name.fl_str_mv Repositório Institucional da UTFPR (da Universidade Tecnológica Federal do Paraná (RIUT)) - Universidade Tecnológica Federal do Paraná (UTFPR)
repository.mail.fl_str_mv riut@utfpr.edu.br || sibi@utfpr.edu.br
_version_ 1850498265875742720