Algoritmos para o problema da árvore geradora mínima probabilística
| Ano de defesa: | 2010 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/SLSS-85ZPVJ |
Resumo: | The Probabilistic Minimum Spanning Tree Problem is a generalization of the classical Minimum Spanning Tree problem, addressing the assumption that arise when not all nodes are deterministically present but, rather, nodes are active with known probabilities. Given a graph, G = (V,E), where there is a cost associated with every edge in E and a probability of each node in V to be active, the objective is to build a sub-tree T in G a priori, where the expected cost of T is minimum. This problem is proved to be NP-Hard in the general case. In this dissertation, the homogeneous case of the problem, when all nodes havethe same probability of being active, is described, analyzed and solved through local search algorithms. A constructive heuristic is proposed in order to find feasible solutions for the problem. Starting through a technique that efficiently evaluates the costs of neighboring solutions, it is proposed the embedding of local search algorithms into a Tabu Search metaheuristic, capable of yielding better quality solutions for the problem.It is also proposed a model that can be solved through Integer Programming. The analysis of the results shows that the algorithms, when compared to the resolution of the exact model, proved to be an efficient tool to deal with a computationally difficult problem. |
| id |
UFMG_b174b8e59fafe7a9aa831aabac47e70d |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/SLSS-85ZPVJ |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Algoritmos para o problema da árvore geradora mínima probabilísticaOtimização combinatóriaProgramação linearTeoria dos grafosProgramação InteiraPMSTÁrvore Geradora MínimaHeurísticasThe Probabilistic Minimum Spanning Tree Problem is a generalization of the classical Minimum Spanning Tree problem, addressing the assumption that arise when not all nodes are deterministically present but, rather, nodes are active with known probabilities. Given a graph, G = (V,E), where there is a cost associated with every edge in E and a probability of each node in V to be active, the objective is to build a sub-tree T in G a priori, where the expected cost of T is minimum. This problem is proved to be NP-Hard in the general case. In this dissertation, the homogeneous case of the problem, when all nodes havethe same probability of being active, is described, analyzed and solved through local search algorithms. A constructive heuristic is proposed in order to find feasible solutions for the problem. Starting through a technique that efficiently evaluates the costs of neighboring solutions, it is proposed the embedding of local search algorithms into a Tabu Search metaheuristic, capable of yielding better quality solutions for the problem.It is also proposed a model that can be solved through Integer Programming. The analysis of the results shows that the algorithms, when compared to the resolution of the exact model, proved to be an efficient tool to deal with a computationally difficult problem.Universidade Federal de Minas Gerais2019-08-13T22:37:38Z2025-09-09T00:52:39Z2019-08-13T22:37:38Z2010-05-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/SLSS-85ZPVJRafael Ferreira Barra de Souzainfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:52:39Zoai:repositorio.ufmg.br:1843/SLSS-85ZPVJRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:52:39Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Algoritmos para o problema da árvore geradora mínima probabilística |
| title |
Algoritmos para o problema da árvore geradora mínima probabilística |
| spellingShingle |
Algoritmos para o problema da árvore geradora mínima probabilística Rafael Ferreira Barra de Souza Otimização combinatória Programação linear Teoria dos grafos Programação Inteira PMST Árvore Geradora Mínima Heurísticas |
| title_short |
Algoritmos para o problema da árvore geradora mínima probabilística |
| title_full |
Algoritmos para o problema da árvore geradora mínima probabilística |
| title_fullStr |
Algoritmos para o problema da árvore geradora mínima probabilística |
| title_full_unstemmed |
Algoritmos para o problema da árvore geradora mínima probabilística |
| title_sort |
Algoritmos para o problema da árvore geradora mínima probabilística |
| author |
Rafael Ferreira Barra de Souza |
| author_facet |
Rafael Ferreira Barra de Souza |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Rafael Ferreira Barra de Souza |
| dc.subject.por.fl_str_mv |
Otimização combinatória Programação linear Teoria dos grafos Programação Inteira PMST Árvore Geradora Mínima Heurísticas |
| topic |
Otimização combinatória Programação linear Teoria dos grafos Programação Inteira PMST Árvore Geradora Mínima Heurísticas |
| description |
The Probabilistic Minimum Spanning Tree Problem is a generalization of the classical Minimum Spanning Tree problem, addressing the assumption that arise when not all nodes are deterministically present but, rather, nodes are active with known probabilities. Given a graph, G = (V,E), where there is a cost associated with every edge in E and a probability of each node in V to be active, the objective is to build a sub-tree T in G a priori, where the expected cost of T is minimum. This problem is proved to be NP-Hard in the general case. In this dissertation, the homogeneous case of the problem, when all nodes havethe same probability of being active, is described, analyzed and solved through local search algorithms. A constructive heuristic is proposed in order to find feasible solutions for the problem. Starting through a technique that efficiently evaluates the costs of neighboring solutions, it is proposed the embedding of local search algorithms into a Tabu Search metaheuristic, capable of yielding better quality solutions for the problem.It is also proposed a model that can be solved through Integer Programming. The analysis of the results shows that the algorithms, when compared to the resolution of the exact model, proved to be an efficient tool to deal with a computationally difficult problem. |
| publishDate |
2010 |
| dc.date.none.fl_str_mv |
2010-05-31 2019-08-13T22:37:38Z 2019-08-13T22:37:38Z 2025-09-09T00:52:39Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/SLSS-85ZPVJ |
| url |
https://hdl.handle.net/1843/SLSS-85ZPVJ |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414118962003968 |