Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo
| Ano de defesa: | 2012 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Minas Gerais
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://hdl.handle.net/1843/ESBF-8SULUR |
Resumo: | Given an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided. |
| id |
UFMG_4cbfd5df2f31036f1722cd5e46e3cc1f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufmg.br:1843/ESBF-8SULUR |
| network_acronym_str |
UFMG |
| network_name_str |
Repositório Institucional da UFMG |
| repository_id_str |
|
| spelling |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimoComputaçãorelaxação lagrangeanamínimo com restrição de grau mínimobranch-and-cutlocal branchingotimização combinatóriaprogramação paralelaformulações de programação inteiraproblema da árvore geradora de custoGiven an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided.Universidade Federal de Minas Gerais2019-08-12T21:52:21Z2025-09-09T00:08:20Z2019-08-12T21:52:21Z2012-02-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://hdl.handle.net/1843/ESBF-8SULURLeonardo Conegundes Martinezinfo:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:08:20Zoai:repositorio.ufmg.br:1843/ESBF-8SULURRepositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:08:20Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false |
| dc.title.none.fl_str_mv |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| title |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| spellingShingle |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo Leonardo Conegundes Martinez Computação relaxação lagrangeana mínimo com restrição de grau mínimo branch-and-cut local branching otimização combinatória programação paralela formulações de programação inteira problema da árvore geradora de custo |
| title_short |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| title_full |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| title_fullStr |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| title_full_unstemmed |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| title_sort |
Formulações e algoritmos sequenciais e paralelos para o problema da árvore geradora de custo mínimo com restrição de grau mínimo |
| author |
Leonardo Conegundes Martinez |
| author_facet |
Leonardo Conegundes Martinez |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Leonardo Conegundes Martinez |
| dc.subject.por.fl_str_mv |
Computação relaxação lagrangeana mínimo com restrição de grau mínimo branch-and-cut local branching otimização combinatória programação paralela formulações de programação inteira problema da árvore geradora de custo |
| topic |
Computação relaxação lagrangeana mínimo com restrição de grau mínimo branch-and-cut local branching otimização combinatória programação paralela formulações de programação inteira problema da árvore geradora de custo |
| description |
Given an edge weighted undirected graph G and a positive integer d, the Min-degree Constrained Minimum Spanning Tree Problem (MDMST) consists of finding a minimum cost spanning tree T of G, such that each vertex is either a leaf or else has a degree at least d in T. The MDMST was recently proposed and belongs to the class NP-Hard for d >= 3. In this work, we discuss several formulations and optimization algorithms for the problem. We start by introducing two Integer Programming Formulations based on exponentially many undirected and directed subtour breaking constraints and compare the strength of their Linear Programming bounds, both theoretically and computationally. A Branch-and-cut (BC) algorithm and a Local Branching method that uses BC as its inner solver are proposed, both based on the strongest formulation, the directed one. Aiming to overcome the fact that the directed formulation is not symmetric with respect to the Linear Programming bounds, we also present a symmetric and compact reformulation, devised with the application of an intersection reformulation technique to the directed model. The reformulation proved to be much stronger than the previous models, but evaluating its bounds directly by Linear Programming solvers is very time consuming. Therefore, we propose a Lagrangian Relaxation algorithm for approximating them. Attempting to speed up the computation of the Lagrangian dual bounds, we implemented a parallel Subgradient Method. We also introduced a Lagrangian heuristic based on the Local Branching algorithm. With the proposed methods, several new optimality certificates, best lower and upper bounds for MDMST are provided. |
| publishDate |
2012 |
| dc.date.none.fl_str_mv |
2012-02-13 2019-08-12T21:52:21Z 2019-08-12T21:52:21Z 2025-09-09T00:08:20Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://hdl.handle.net/1843/ESBF-8SULUR |
| url |
https://hdl.handle.net/1843/ESBF-8SULUR |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| publisher.none.fl_str_mv |
Universidade Federal de Minas Gerais |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMG instname:Universidade Federal de Minas Gerais (UFMG) instacron:UFMG |
| instname_str |
Universidade Federal de Minas Gerais (UFMG) |
| instacron_str |
UFMG |
| institution |
UFMG |
| reponame_str |
Repositório Institucional da UFMG |
| collection |
Repositório Institucional da UFMG |
| repository.name.fl_str_mv |
Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG) |
| repository.mail.fl_str_mv |
repositorio@ufmg.br |
| _version_ |
1856414084724948992 |