Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Ivan Reinaldo Meneghini
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/31278
Resumo: The solution of a multi-objective optimization problem is a set characterized by the trade off of M objectives. In the case of the minimization problem F : R N → R M, these trade off solutions correspond to a minimal set according to a partial order relation in space R M. The search for solutions of smaller variation in the presence of noise in the variables x ∈ R N characterizes Robust Multiobjective Optimization. This work presents a co-evolutionary algorithm for Robust Optimization. The presented proposal uses the objective space decomposition/aggregation strategy in a competitive co-evolution algorithm. Along with this new technique, a new method of generating vectors of weight almost equally spaced in the objective space was developed. This new method of generating weight vectors is not limited in the number of weight vectors created neither to the norm of each vector, that can be located in the first orthant of the objective space to form a cone of vectors with vertex in the origin. The axis of this cone corresponds to a preference vector of the decision maker and its aperture defines the extension of the chosen region of interest. The quality of the weight vectors of weight produced by this new methodology was compared with the usual method of generation of weight vectors and the results were satisfactory. In addition, a new class of multi-objective optimization problems was developed, encompassing usual and robust optimization, with and without the presence of equality and inequality constraints. Following the structure used in the construction of the test functions, a new performance evaluation metric is also presented. The comparison of the results obtained between the proposed method and other techniques showed the superiority of the presented methods. A sample of the results obtained was used in the data visualization tool developed, showing the conclusions obtained.
id UFMG_c2f14e12b9292eec4881d92bace4f729
oai_identifier_str oai:repositorio.ufmg.br:1843/31278
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robustaEngenharia elétricaOtimização multiobjetivoOtimização robustaOtimização multiobjetivo robustaRegião de interesseProblemas de otimização multiobjetivo robustaVisualização de dadosThe solution of a multi-objective optimization problem is a set characterized by the trade off of M objectives. In the case of the minimization problem F : R N → R M, these trade off solutions correspond to a minimal set according to a partial order relation in space R M. The search for solutions of smaller variation in the presence of noise in the variables x ∈ R N characterizes Robust Multiobjective Optimization. This work presents a co-evolutionary algorithm for Robust Optimization. The presented proposal uses the objective space decomposition/aggregation strategy in a competitive co-evolution algorithm. Along with this new technique, a new method of generating vectors of weight almost equally spaced in the objective space was developed. This new method of generating weight vectors is not limited in the number of weight vectors created neither to the norm of each vector, that can be located in the first orthant of the objective space to form a cone of vectors with vertex in the origin. The axis of this cone corresponds to a preference vector of the decision maker and its aperture defines the extension of the chosen region of interest. The quality of the weight vectors of weight produced by this new methodology was compared with the usual method of generation of weight vectors and the results were satisfactory. In addition, a new class of multi-objective optimization problems was developed, encompassing usual and robust optimization, with and without the presence of equality and inequality constraints. Following the structure used in the construction of the test functions, a new performance evaluation metric is also presented. The comparison of the results obtained between the proposed method and other techniques showed the superiority of the presented methods. A sample of the results obtained was used in the data visualization tool developed, showing the conclusions obtained.CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de Minas Gerais2019-11-26T17:17:17Z2025-09-08T22:53:49Z2019-11-26T17:17:17Z2018-12-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/31278porhttp://creativecommons.org/licenses/by-nc-nd/3.0/pt/info:eu-repo/semantics/openAccessIvan Reinaldo Meneghinireponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-08T22:53:49Zoai:repositorio.ufmg.br:1843/31278Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-08T22:53:49Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
title Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
spellingShingle Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
Ivan Reinaldo Meneghini
Engenharia elétrica
Otimização multiobjetivo
Otimização robusta
Otimização multiobjetivo robusta
Região de interesse
Problemas de otimização multiobjetivo robusta
Visualização de dados
title_short Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
title_full Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
title_fullStr Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
title_full_unstemmed Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
title_sort Uma proposta de algoritmo baseado em cone de preferência para otimização com muitos objetivos e robusta
author Ivan Reinaldo Meneghini
author_facet Ivan Reinaldo Meneghini
author_role author
dc.contributor.author.fl_str_mv Ivan Reinaldo Meneghini
dc.subject.por.fl_str_mv Engenharia elétrica
Otimização multiobjetivo
Otimização robusta
Otimização multiobjetivo robusta
Região de interesse
Problemas de otimização multiobjetivo robusta
Visualização de dados
topic Engenharia elétrica
Otimização multiobjetivo
Otimização robusta
Otimização multiobjetivo robusta
Região de interesse
Problemas de otimização multiobjetivo robusta
Visualização de dados
description The solution of a multi-objective optimization problem is a set characterized by the trade off of M objectives. In the case of the minimization problem F : R N → R M, these trade off solutions correspond to a minimal set according to a partial order relation in space R M. The search for solutions of smaller variation in the presence of noise in the variables x ∈ R N characterizes Robust Multiobjective Optimization. This work presents a co-evolutionary algorithm for Robust Optimization. The presented proposal uses the objective space decomposition/aggregation strategy in a competitive co-evolution algorithm. Along with this new technique, a new method of generating vectors of weight almost equally spaced in the objective space was developed. This new method of generating weight vectors is not limited in the number of weight vectors created neither to the norm of each vector, that can be located in the first orthant of the objective space to form a cone of vectors with vertex in the origin. The axis of this cone corresponds to a preference vector of the decision maker and its aperture defines the extension of the chosen region of interest. The quality of the weight vectors of weight produced by this new methodology was compared with the usual method of generation of weight vectors and the results were satisfactory. In addition, a new class of multi-objective optimization problems was developed, encompassing usual and robust optimization, with and without the presence of equality and inequality constraints. Following the structure used in the construction of the test functions, a new performance evaluation metric is also presented. The comparison of the results obtained between the proposed method and other techniques showed the superiority of the presented methods. A sample of the results obtained was used in the data visualization tool developed, showing the conclusions obtained.
publishDate 2018
dc.date.none.fl_str_mv 2018-12-07
2019-11-26T17:17:17Z
2019-11-26T17:17:17Z
2025-09-08T22:53:49Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/31278
url https://hdl.handle.net/1843/31278
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/pt/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856413950915117056