Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas

Detalhes bibliográficos
Ano de defesa: 2017
Autor(a) principal: Claret Laurente Sabioni
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Minas Gerais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://hdl.handle.net/1843/35693
Resumo: The multiobjective optimization is rather used on the design phase of a system, whereby a set of approximated Pareto-optimal solutions is obtained for the system model under design. However, many sources of uncertainties in real world may jeopardize the solutions optimal condition reach so far. These uncertainties must be identified, measured, and taken into account on the design phase, aiming to minimize their impact on the following phases. Thus, multiobjective robust optimization methods have been widely employed on design phases in order to reduce the harmful effects of uncertainties. This thesis presents the different types of uncertainties, the concept of robust solutions, the most common methods of robust optimization in the literature, and the proposal of a set of test functions for robust optimization, a set of new robust metrics and robust optimization methods, which were combined for developing new algorithms for multiobjective robust optimization. Three novel algorithms are highlighted in this thesis for solving problems with interval parametric uncertainties: 1) Worst Case Estimation Multiobjective Evolutionary Algorithm (WCEMOEA), uses the minimax formulation jointly with a worst case scenario estimator to find solutions that minimize the worst case; 2) Robust Hypercube Space Partitioning Evolutionary Algorithm (RHySPEA), combines the use of two new robustness metrics with the use of an external database to measure and minimize the solutions sensitivity against uncertainties with few resampling; 3) Minimum Deviation Evolutionary Algorithm based on Robustness Factor (MDEA-RF), which is a novel iterative method aiming to minimize the maximum deviation of a perturbed solution based on the definition of a robustness factor by the decision maker. The algorithms were applied to test functions, and to real engineering problems, being successful to find robust solutions efficiently, with few model evaluations.
id UFMG_0e7d60dc5cf53618a1797c5edf09eae6
oai_identifier_str oai:repositorio.ufmg.br:1843/35693
network_acronym_str UFMG
network_name_str Repositório Institucional da UFMG
repository_id_str
spelling Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezasDevelopment of methods for solving multiobjective optimization problems with uncertaintiesEngenharia elétricaOtimização multiobjetivoAlgoritmos genéticosOtimização robusta multiobjetivoAlgoritmo genéticoProjeto robustoOtimização minimaxThe multiobjective optimization is rather used on the design phase of a system, whereby a set of approximated Pareto-optimal solutions is obtained for the system model under design. However, many sources of uncertainties in real world may jeopardize the solutions optimal condition reach so far. These uncertainties must be identified, measured, and taken into account on the design phase, aiming to minimize their impact on the following phases. Thus, multiobjective robust optimization methods have been widely employed on design phases in order to reduce the harmful effects of uncertainties. This thesis presents the different types of uncertainties, the concept of robust solutions, the most common methods of robust optimization in the literature, and the proposal of a set of test functions for robust optimization, a set of new robust metrics and robust optimization methods, which were combined for developing new algorithms for multiobjective robust optimization. Three novel algorithms are highlighted in this thesis for solving problems with interval parametric uncertainties: 1) Worst Case Estimation Multiobjective Evolutionary Algorithm (WCEMOEA), uses the minimax formulation jointly with a worst case scenario estimator to find solutions that minimize the worst case; 2) Robust Hypercube Space Partitioning Evolutionary Algorithm (RHySPEA), combines the use of two new robustness metrics with the use of an external database to measure and minimize the solutions sensitivity against uncertainties with few resampling; 3) Minimum Deviation Evolutionary Algorithm based on Robustness Factor (MDEA-RF), which is a novel iterative method aiming to minimize the maximum deviation of a perturbed solution based on the definition of a robustness factor by the decision maker. The algorithms were applied to test functions, and to real engineering problems, being successful to find robust solutions efficiently, with few model evaluations.FAPEMIG - Fundação de Amparo à Pesquisa do Estado de Minas GeraisUniversidade Federal de Minas Gerais2021-04-14T17:15:54Z2025-09-09T00:35:16Z2021-04-14T17:15:54Z2017-02-21info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://hdl.handle.net/1843/35693porClaret Laurente Sabioniinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMGinstname:Universidade Federal de Minas Gerais (UFMG)instacron:UFMG2025-09-09T00:35:16Zoai:repositorio.ufmg.br:1843/35693Repositório InstitucionalPUBhttps://repositorio.ufmg.br/oairepositorio@ufmg.bropendoar:2025-09-09T00:35:16Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)false
dc.title.none.fl_str_mv Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
Development of methods for solving multiobjective optimization problems with uncertainties
title Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
spellingShingle Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
Claret Laurente Sabioni
Engenharia elétrica
Otimização multiobjetivo
Algoritmos genéticos
Otimização robusta multiobjetivo
Algoritmo genético
Projeto robusto
Otimização minimax
title_short Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
title_full Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
title_fullStr Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
title_full_unstemmed Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
title_sort Desenvolvimento de métodos para solução de problemas de otimização multiobjetivo com incertezas
author Claret Laurente Sabioni
author_facet Claret Laurente Sabioni
author_role author
dc.contributor.author.fl_str_mv Claret Laurente Sabioni
dc.subject.por.fl_str_mv Engenharia elétrica
Otimização multiobjetivo
Algoritmos genéticos
Otimização robusta multiobjetivo
Algoritmo genético
Projeto robusto
Otimização minimax
topic Engenharia elétrica
Otimização multiobjetivo
Algoritmos genéticos
Otimização robusta multiobjetivo
Algoritmo genético
Projeto robusto
Otimização minimax
description The multiobjective optimization is rather used on the design phase of a system, whereby a set of approximated Pareto-optimal solutions is obtained for the system model under design. However, many sources of uncertainties in real world may jeopardize the solutions optimal condition reach so far. These uncertainties must be identified, measured, and taken into account on the design phase, aiming to minimize their impact on the following phases. Thus, multiobjective robust optimization methods have been widely employed on design phases in order to reduce the harmful effects of uncertainties. This thesis presents the different types of uncertainties, the concept of robust solutions, the most common methods of robust optimization in the literature, and the proposal of a set of test functions for robust optimization, a set of new robust metrics and robust optimization methods, which were combined for developing new algorithms for multiobjective robust optimization. Three novel algorithms are highlighted in this thesis for solving problems with interval parametric uncertainties: 1) Worst Case Estimation Multiobjective Evolutionary Algorithm (WCEMOEA), uses the minimax formulation jointly with a worst case scenario estimator to find solutions that minimize the worst case; 2) Robust Hypercube Space Partitioning Evolutionary Algorithm (RHySPEA), combines the use of two new robustness metrics with the use of an external database to measure and minimize the solutions sensitivity against uncertainties with few resampling; 3) Minimum Deviation Evolutionary Algorithm based on Robustness Factor (MDEA-RF), which is a novel iterative method aiming to minimize the maximum deviation of a perturbed solution based on the definition of a robustness factor by the decision maker. The algorithms were applied to test functions, and to real engineering problems, being successful to find robust solutions efficiently, with few model evaluations.
publishDate 2017
dc.date.none.fl_str_mv 2017-02-21
2021-04-14T17:15:54Z
2021-04-14T17:15:54Z
2025-09-09T00:35:16Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://hdl.handle.net/1843/35693
url https://hdl.handle.net/1843/35693
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Minas Gerais
publisher.none.fl_str_mv Universidade Federal de Minas Gerais
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMG
instname:Universidade Federal de Minas Gerais (UFMG)
instacron:UFMG
instname_str Universidade Federal de Minas Gerais (UFMG)
instacron_str UFMG
institution UFMG
reponame_str Repositório Institucional da UFMG
collection Repositório Institucional da UFMG
repository.name.fl_str_mv Repositório Institucional da UFMG - Universidade Federal de Minas Gerais (UFMG)
repository.mail.fl_str_mv repositorio@ufmg.br
_version_ 1856414003674218496