Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Almeida, Gisele Carolina lattes
Orientador(a): Beijo, Luiz Alberto lattes
Banca de defesa: Nogueira, Denismar Alves, Gomes, Davi Butturi
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Alfenas
Programa de Pós-Graduação: Programa de Pós-Graduação em Estatística Aplicada e Biometria
Departamento: Instituto de Ciências Exatas
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://repositorio.unifal-mg.edu.br/handle/123456789/1159
Resumo: The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region.
id UNIFAL_71d9365edb07f652f654bffbaea1fd1c
oai_identifier_str oai:repositorio.unifal-mg.edu.br:123456789/1159
network_acronym_str UNIFAL
network_name_str Biblioteca Digital de Teses e Dissertações da UNIFAL
repository_id_str
spelling Almeida, Gisele Carolinahttp://lattes.cnpq.br/8194104388434526Avelar, Fabricio GoenckingNogueira, Denismar AlvesGomes, Davi ButturiBeijo, Luiz Albertohttp://lattes.cnpq.br/56517231816833522018-05-08T22:54:28Z2018-02-26ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/1159The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region.A previsão probabilística da ocorrência de ventos extremos é de grande importância para o planejamento de projetos na engenharia agrícola e civil, possibilitando evitar ou diminuir os impactos destrutivos. Dessa forma, identificar metodologias que permitam realizar previsões com maior eficiência é extremamente necessário. Diante destes fatos, objetivou-se com esse trabalho comparar a metodologia Bayesiana, avaliando diferentes distribuições a priori, e da máxima verossimilhança na previsão da ocorrência de ventos máximos, por semestre, em Sorocaba-SP e Bauru-SP. Avaliou-se, também, o ajuste da distribuição Gumbel e da distribuição Generalizada de Valores Extremos aos dados semestrais, de janeiro de 2006 a dezembro de 2016, dos referidos lugares. A distribuição normal foi utilizada como priori para a elicitação da informação, na metodologia Bayesiana, e as informações a priori, foram obtidas analisando-se os dados de velocidade máxima de Piracicaba-SP. Para obtenção das marginais das distribuições a posteriori, aplicou-se o método Monte Carlo via Cadeia de Markov utilizando-se os softwares OpenBugs e R. Com intuito de avaliar qual a melhor metodologia de estimação e o melhor modelo, foram verificados o Deviance Information Criterion, a acurácia, a precisão e o erro médio de predição das estimativas dos níveis máximos de ventos para determinados tempos de retorno. As distribuições GEV e Gumbel ajustaram-se a séries de dados de velocidade máxima de ventos estudadas. A distribuição Gumbel considerando a abordagem Bayesiana com estrutura de variância a priori multiplicada por oito, mostrou-se mais eficiente na previsão de ventos máximos semestral de Sorocaba-SP. Para Bauru-SP, a distribuição GEV com estrutura de matriz de covariâncias multiplicada por oito foi a mais propícia, apresentando resultados mais acurados e precisos. A aplicação da inferência Bayesiana levou a resultados mais precisos, acurados e com menores erros de previsão, mostrando a eficiência da incorporação de informações a priori no estudo de velocidade máxima de ventos. A partir desses resultados, foram feitas as predições de ventos máximos em Bauru-SP e Sorocaba-SP, para os tempos de retorno de 2, 5, 10, 25, 50 e 100 semestres, que podem ajudar no planejamento possibilitando evitar catástrofes na agricultura, na construção civil e no setor financeiro da região.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Ventos – Brasil - MediçãoTeoria bayesiana de decisão estatísticaPrevisão estatísticaPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASUma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SPinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632002075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALAlmeida, Gisele CarolinaCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/78639c19-2273-4398-9125-ddada11602c7/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/6d45a409-2283-4f61-9143-f8bc5f549a71/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/1052c87e-f313-404b-afb3-a20476a10fe6/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/a61d9638-de05-4aab-9d28-b2cf316e532f/download31555718c4fc75849dd08f27935d4f6bMD51ORIGINALDissertação de Gisele Carolina Almeida.pdfDissertação de Gisele Carolina Almeida.pdfapplication/pdf1632594https://repositorio.unifal-mg.edu.br/bitstreams/51953ab3-d6fe-4ecb-a92f-c2484ceaa51b/download8d40024d3dd5ae25146c60d8d3137d34MD55TEXTDissertação de Gisele Carolina Almeida.pdf.txtDissertação de Gisele Carolina Almeida.pdf.txtExtracted texttext/plain104102https://repositorio.unifal-mg.edu.br/bitstreams/7af7fbc0-8893-4e0b-8f8b-efe50e3f21a7/download6241d2c8085289255f073b7f0d075389MD56THUMBNAILDissertação de Gisele Carolina Almeida.pdf.jpgDissertação de Gisele Carolina Almeida.pdf.jpgGenerated Thumbnailimage/jpeg2484https://repositorio.unifal-mg.edu.br/bitstreams/07ca1946-8b96-40ee-b315-5671e45ca76d/downloadfcb0a810cba64c931b745a9b9820c324MD57123456789/11592025-04-14 17:35:30.881http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1159https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T20:35:30Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg==
dc.title.pt-BR.fl_str_mv Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
title Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
spellingShingle Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
Almeida, Gisele Carolina
Ventos – Brasil - Medição
Teoria bayesiana de decisão estatística
Previsão estatística
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
title_short Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
title_full Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
title_fullStr Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
title_full_unstemmed Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
title_sort Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
author Almeida, Gisele Carolina
author_facet Almeida, Gisele Carolina
author_role author
dc.contributor.author.fl_str_mv Almeida, Gisele Carolina
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/8194104388434526
dc.contributor.advisor-co1.fl_str_mv Avelar, Fabricio Goencking
dc.contributor.referee1.fl_str_mv Nogueira, Denismar Alves
dc.contributor.referee2.fl_str_mv Gomes, Davi Butturi
dc.contributor.advisor1.fl_str_mv Beijo, Luiz Alberto
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/5651723181683352
contributor_str_mv Avelar, Fabricio Goencking
Nogueira, Denismar Alves
Gomes, Davi Butturi
Beijo, Luiz Alberto
dc.subject.por.fl_str_mv Ventos – Brasil - Medição
Teoria bayesiana de decisão estatística
Previsão estatística
topic Ventos – Brasil - Medição
Teoria bayesiana de decisão estatística
Previsão estatística
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
dc.subject.cnpq.fl_str_mv PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS
description The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-05-08T22:54:28Z
dc.date.issued.fl_str_mv 2018-02-26
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.
dc.identifier.uri.fl_str_mv https://repositorio.unifal-mg.edu.br/handle/123456789/1159
identifier_str_mv ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.
url https://repositorio.unifal-mg.edu.br/handle/123456789/1159
dc.language.iso.fl_str_mv por
language por
dc.relation.department.fl_str_mv -8156311678363143599
dc.relation.confidence.fl_str_mv 600
600
600
dc.relation.cnpq.fl_str_mv -2104850853990363200
dc.relation.sponsorship.fl_str_mv 2075167498588264571
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
http://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/4.0/
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Estatística Aplicada e Biometria
dc.publisher.initials.fl_str_mv UNIFAL-MG
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ciências Exatas
publisher.none.fl_str_mv Universidade Federal de Alfenas
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL
instname:Universidade Federal de Alfenas (UNIFAL)
instacron:UNIFAL
instname_str Universidade Federal de Alfenas (UNIFAL)
instacron_str UNIFAL
institution UNIFAL
reponame_str Biblioteca Digital de Teses e Dissertações da UNIFAL
collection Biblioteca Digital de Teses e Dissertações da UNIFAL
bitstream.url.fl_str_mv https://repositorio.unifal-mg.edu.br/bitstreams/78639c19-2273-4398-9125-ddada11602c7/download
https://repositorio.unifal-mg.edu.br/bitstreams/6d45a409-2283-4f61-9143-f8bc5f549a71/download
https://repositorio.unifal-mg.edu.br/bitstreams/1052c87e-f313-404b-afb3-a20476a10fe6/download
https://repositorio.unifal-mg.edu.br/bitstreams/a61d9638-de05-4aab-9d28-b2cf316e532f/download
https://repositorio.unifal-mg.edu.br/bitstreams/51953ab3-d6fe-4ecb-a92f-c2484ceaa51b/download
https://repositorio.unifal-mg.edu.br/bitstreams/7af7fbc0-8893-4e0b-8f8b-efe50e3f21a7/download
https://repositorio.unifal-mg.edu.br/bitstreams/07ca1946-8b96-40ee-b315-5671e45ca76d/download
bitstream.checksum.fl_str_mv 4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
31555718c4fc75849dd08f27935d4f6b
8d40024d3dd5ae25146c60d8d3137d34
6241d2c8085289255f073b7f0d075389
fcb0a810cba64c931b745a9b9820c324
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)
repository.mail.fl_str_mv bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br
_version_ 1850508404554989568