Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | , |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Alfenas
|
| Programa de Pós-Graduação: |
Programa de Pós-Graduação em Estatística Aplicada e Biometria
|
| Departamento: |
Instituto de Ciências Exatas
|
| País: |
Brasil
|
| Palavras-chave em Português: | |
| Área do conhecimento CNPq: | |
| Link de acesso: | https://repositorio.unifal-mg.edu.br/handle/123456789/1159 |
Resumo: | The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region. |
| id |
UNIFAL_71d9365edb07f652f654bffbaea1fd1c |
|---|---|
| oai_identifier_str |
oai:repositorio.unifal-mg.edu.br:123456789/1159 |
| network_acronym_str |
UNIFAL |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| repository_id_str |
|
| spelling |
Almeida, Gisele Carolinahttp://lattes.cnpq.br/8194104388434526Avelar, Fabricio GoenckingNogueira, Denismar AlvesGomes, Davi ButturiBeijo, Luiz Albertohttp://lattes.cnpq.br/56517231816833522018-05-08T22:54:28Z2018-02-26ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018.https://repositorio.unifal-mg.edu.br/handle/123456789/1159The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region.A previsão probabilística da ocorrência de ventos extremos é de grande importância para o planejamento de projetos na engenharia agrícola e civil, possibilitando evitar ou diminuir os impactos destrutivos. Dessa forma, identificar metodologias que permitam realizar previsões com maior eficiência é extremamente necessário. Diante destes fatos, objetivou-se com esse trabalho comparar a metodologia Bayesiana, avaliando diferentes distribuições a priori, e da máxima verossimilhança na previsão da ocorrência de ventos máximos, por semestre, em Sorocaba-SP e Bauru-SP. Avaliou-se, também, o ajuste da distribuição Gumbel e da distribuição Generalizada de Valores Extremos aos dados semestrais, de janeiro de 2006 a dezembro de 2016, dos referidos lugares. A distribuição normal foi utilizada como priori para a elicitação da informação, na metodologia Bayesiana, e as informações a priori, foram obtidas analisando-se os dados de velocidade máxima de Piracicaba-SP. Para obtenção das marginais das distribuições a posteriori, aplicou-se o método Monte Carlo via Cadeia de Markov utilizando-se os softwares OpenBugs e R. Com intuito de avaliar qual a melhor metodologia de estimação e o melhor modelo, foram verificados o Deviance Information Criterion, a acurácia, a precisão e o erro médio de predição das estimativas dos níveis máximos de ventos para determinados tempos de retorno. As distribuições GEV e Gumbel ajustaram-se a séries de dados de velocidade máxima de ventos estudadas. A distribuição Gumbel considerando a abordagem Bayesiana com estrutura de variância a priori multiplicada por oito, mostrou-se mais eficiente na previsão de ventos máximos semestral de Sorocaba-SP. Para Bauru-SP, a distribuição GEV com estrutura de matriz de covariâncias multiplicada por oito foi a mais propícia, apresentando resultados mais acurados e precisos. A aplicação da inferência Bayesiana levou a resultados mais precisos, acurados e com menores erros de previsão, mostrando a eficiência da incorporação de informações a priori no estudo de velocidade máxima de ventos. A partir desses resultados, foram feitas as predições de ventos máximos em Bauru-SP e Sorocaba-SP, para os tempos de retorno de 2, 5, 10, 25, 50 e 100 semestres, que podem ajudar no planejamento possibilitando evitar catástrofes na agricultura, na construção civil e no setor financeiro da região.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESapplication/pdfporUniversidade Federal de AlfenasPrograma de Pós-Graduação em Estatística Aplicada e BiometriaUNIFAL-MGBrasilInstituto de Ciências Exatasinfo:eu-repo/semantics/openAccesshttp://creativecommons.org/licenses/by-nc-nd/4.0/Ventos – Brasil - MediçãoTeoria bayesiana de decisão estatísticaPrevisão estatísticaPROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADASUma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SPinfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/publishedVersion-8156311678363143599600600600-21048508539903632002075167498588264571reponame:Biblioteca Digital de Teses e Dissertações da UNIFALinstname:Universidade Federal de Alfenas (UNIFAL)instacron:UNIFALAlmeida, Gisele CarolinaCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849https://repositorio.unifal-mg.edu.br/bitstreams/78639c19-2273-4398-9125-ddada11602c7/download4afdbb8c545fd630ea7db775da747b2fMD52license_textlicense_texttext/html; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/6d45a409-2283-4f61-9143-f8bc5f549a71/downloadd41d8cd98f00b204e9800998ecf8427eMD53license_rdflicense_rdfapplication/rdf+xml; charset=utf-80https://repositorio.unifal-mg.edu.br/bitstreams/1052c87e-f313-404b-afb3-a20476a10fe6/downloadd41d8cd98f00b204e9800998ecf8427eMD54LICENSElicense.txtlicense.txttext/plain; charset=utf-81987https://repositorio.unifal-mg.edu.br/bitstreams/a61d9638-de05-4aab-9d28-b2cf316e532f/download31555718c4fc75849dd08f27935d4f6bMD51ORIGINALDissertação de Gisele Carolina Almeida.pdfDissertação de Gisele Carolina Almeida.pdfapplication/pdf1632594https://repositorio.unifal-mg.edu.br/bitstreams/51953ab3-d6fe-4ecb-a92f-c2484ceaa51b/download8d40024d3dd5ae25146c60d8d3137d34MD55TEXTDissertação de Gisele Carolina Almeida.pdf.txtDissertação de Gisele Carolina Almeida.pdf.txtExtracted texttext/plain104102https://repositorio.unifal-mg.edu.br/bitstreams/7af7fbc0-8893-4e0b-8f8b-efe50e3f21a7/download6241d2c8085289255f073b7f0d075389MD56THUMBNAILDissertação de Gisele Carolina Almeida.pdf.jpgDissertação de Gisele Carolina Almeida.pdf.jpgGenerated Thumbnailimage/jpeg2484https://repositorio.unifal-mg.edu.br/bitstreams/07ca1946-8b96-40ee-b315-5671e45ca76d/downloadfcb0a810cba64c931b745a9b9820c324MD57123456789/11592025-04-14 17:35:30.881http://creativecommons.org/licenses/by-nc-nd/4.0/open.accessoai:repositorio.unifal-mg.edu.br:123456789/1159https://repositorio.unifal-mg.edu.brBiblioteca Digital de Teses e DissertaçõesPUBhttps://bdtd.unifal-mg.edu.br:8443/oai/requestbdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.bropendoar:2025-04-14T20:35:30Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL)falseTElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCBvIGF1dG9yIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IgY29uY2VkZSDDoCBVbml2ZXJzaWRhZGUgCkZlZGVyYWwgZGUgQWxmZW5hcyAgKFVOSUZBTC1NRykgbyBkaXJlaXRvIG7Do28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhw6fDo28gKGluY2x1aW5kbyBvIHJlc3VtbykgcG9yIHRvZG8gbyBtdW5kbyBubyBmb3JtYXRvIGltcHJlc3NvIGUgZWxldHLDtG5pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zIMOhdWRpbyBvdSB2w61kZW8uCgpWb2PDqiBjb25jb3JkYSBxdWUgYSBVTklGQUwtTUcgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBhICBVTklGQUwtTUcgcG9kZSBtYW50ZXIgbWFpcyBkZSB1bWEgY8OzcGlhIGRlIHN1YSB0ZXNlIG91IApkaXNzZXJ0YcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIGUgcHJlc2VydmHDp8Ojby4KClZvY8OqIGRlY2xhcmEgcXVlIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyDDqSBvcmlnaW5hbCBlIHF1ZSB2b2PDqiB0ZW0gbyBwb2RlciBkZSBjb25jZWRlciBvcyBkaXJlaXRvcyBjb250aWRvcyAKbmVzdGEgbGljZW7Dp2EuIFZvY8OqIHRhbWLDqW0gZGVjbGFyYSBxdWUgbyBkZXDDs3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBuw6NvLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3XDqW0uCgpDYXNvIGEgc3VhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jw6ogbsOjbyBwb3NzdWkgYSB0aXR1bGFyaWRhZGUgZG9zIGRpcmVpdG9zIGF1dG9yYWlzLCB2b2PDqiAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzc8OjbyBpcnJlc3RyaXRhIGRvIGRldGVudG9yIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBwYXJhIGNvbmNlZGVyIMOgICBVTklGQUwtTUcgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbsOnYSwgZSBxdWUgZXNzZSBtYXRlcmlhbCBkZSBwcm9wcmllZGFkZSBkZSB0ZXJjZWlyb3MgZXN0w6EgY2xhcmFtZW50ZSAKaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3Ugbm8gY29udGXDumRvIGRhIHRlc2Ugb3UgZGlzc2VydGHDp8OjbyBvcmEgZGVwb3NpdGFkYS4KCkNBU08gQSBURVNFIE9VIERJU1NFUlRBw4fDg08gT1JBIERFUE9TSVRBREEgVEVOSEEgU0lETyBSRVNVTFRBRE8gREUgVU0gUEFUUk9Dw41OSU8gT1UgCkFQT0lPIERFIFVNQSBBR8OKTkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTsODTyBTRUpBIEEgIFVOSUZBTC1NRywgClZPQ8OKIERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJU8ODTyBDT01PIApUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgRVhJR0lEQVMgUE9SIENPTlRSQVRPIE9VIEFDT1JETy4KCkEgVU5JRkFMLU1HIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSAKZGV0ZW50b3IoZXMpIGRvcyBkaXJlaXRvcyBhdXRvcmFpcyBkYSB0ZXNlIG91IGRpc3NlcnRhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgCmNvbmNlZGlkYXMgcG9yIGVzdGEgbGljZW7Dp2EuCg== |
| dc.title.pt-BR.fl_str_mv |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| title |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| spellingShingle |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP Almeida, Gisele Carolina Ventos – Brasil - Medição Teoria bayesiana de decisão estatística Previsão estatística PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| title_short |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| title_full |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| title_fullStr |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| title_full_unstemmed |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| title_sort |
Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP |
| author |
Almeida, Gisele Carolina |
| author_facet |
Almeida, Gisele Carolina |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Almeida, Gisele Carolina |
| dc.contributor.advisor1Lattes.fl_str_mv |
http://lattes.cnpq.br/8194104388434526 |
| dc.contributor.advisor-co1.fl_str_mv |
Avelar, Fabricio Goencking |
| dc.contributor.referee1.fl_str_mv |
Nogueira, Denismar Alves |
| dc.contributor.referee2.fl_str_mv |
Gomes, Davi Butturi |
| dc.contributor.advisor1.fl_str_mv |
Beijo, Luiz Alberto |
| dc.contributor.authorLattes.fl_str_mv |
http://lattes.cnpq.br/5651723181683352 |
| contributor_str_mv |
Avelar, Fabricio Goencking Nogueira, Denismar Alves Gomes, Davi Butturi Beijo, Luiz Alberto |
| dc.subject.por.fl_str_mv |
Ventos – Brasil - Medição Teoria bayesiana de decisão estatística Previsão estatística |
| topic |
Ventos – Brasil - Medição Teoria bayesiana de decisão estatística Previsão estatística PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| dc.subject.cnpq.fl_str_mv |
PROBABILIDADE E ESTATISTICA::PROBABILIDADE E ESTATISTICA APLICADAS |
| description |
The probabilistic forecast of the occurrence of extreme winds is of great importance for the planning of projects in the agricultural and civil engineering, making possible to avoid or to diminish the destructive impacts. Thus, identifying efficient methodologies for prediction are an urgent matter. In view of these facts, the objective of this work was to compare the Bayesian methodology, evaluating different distributions prior, and maximum likelihood in the prediction of the occurrence of maximum winds, per semester, in Sorocaba-SP and Bauru-SP. It was also evaluated the fitting of the Gumbel distribution and the Generalized Extreme Values (GEV) distribution to the semester data, from January 2006 to December 2016, of the mentioned sites. The normal distribution was used as prior for the elicitation of the information, in the Bayesian methodology, and the prior information was obtained by analyzing the data of maximum speed of Piracicaba-SP. In order to obtain the marginal values of the posterior distributions, the Monte Carlo method was applied via Markov Chain using the software OpenBugs and R. In order to evaluate the best estimation methodology and the best model were verified the Deviance Information Criterion (DIC), the accuracy, precision and mean prediction error of the maximum wind-level estimates for certain return times. The GEV and Gumbel distributions were fitted to the maximum wind speed data series studied. The Gumbel distribution, considering the Bayesian approach with a variance structure prior multiplied by eight, proved to be more efficient in the semi-annual high winds forecast of Sorocaba-SP. For Bauru-SP, the GEV distribution with structure multiplied by eight was the most propitious, presenting more accurate and accurate results. The application of Bayesian inference led to more accurate, accurate and less predictive errors, showing the efficiency of incorporating information prior in the study of maximum wind speed. From these results, predictions of maximum winds were made in Bauru-SP and Sorocaba-SP, for the return times of 2, 5, 10, 25, 50 and 100 semesters, who can help with planning to avoid catastrophes in agriculture , in construction and in the financial sector of the region. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-05-08T22:54:28Z |
| dc.date.issued.fl_str_mv |
2018-02-26 |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.citation.fl_str_mv |
ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018. |
| dc.identifier.uri.fl_str_mv |
https://repositorio.unifal-mg.edu.br/handle/123456789/1159 |
| identifier_str_mv |
ALMEIDA, Gisele Carolina. Uma abordagem Bayesiana para a modelagem dos ventos máximos de Sorocaba-SP e Bauru-SP. 2018. 72 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Alfenas, Alfenas, MG, 2018. |
| url |
https://repositorio.unifal-mg.edu.br/handle/123456789/1159 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.relation.department.fl_str_mv |
-8156311678363143599 |
| dc.relation.confidence.fl_str_mv |
600 600 600 |
| dc.relation.cnpq.fl_str_mv |
-2104850853990363200 |
| dc.relation.sponsorship.fl_str_mv |
2075167498588264571 |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| eu_rights_str_mv |
openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/4.0/ |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.publisher.program.fl_str_mv |
Programa de Pós-Graduação em Estatística Aplicada e Biometria |
| dc.publisher.initials.fl_str_mv |
UNIFAL-MG |
| dc.publisher.country.fl_str_mv |
Brasil |
| dc.publisher.department.fl_str_mv |
Instituto de Ciências Exatas |
| publisher.none.fl_str_mv |
Universidade Federal de Alfenas |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UNIFAL instname:Universidade Federal de Alfenas (UNIFAL) instacron:UNIFAL |
| instname_str |
Universidade Federal de Alfenas (UNIFAL) |
| instacron_str |
UNIFAL |
| institution |
UNIFAL |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| collection |
Biblioteca Digital de Teses e Dissertações da UNIFAL |
| bitstream.url.fl_str_mv |
https://repositorio.unifal-mg.edu.br/bitstreams/78639c19-2273-4398-9125-ddada11602c7/download https://repositorio.unifal-mg.edu.br/bitstreams/6d45a409-2283-4f61-9143-f8bc5f549a71/download https://repositorio.unifal-mg.edu.br/bitstreams/1052c87e-f313-404b-afb3-a20476a10fe6/download https://repositorio.unifal-mg.edu.br/bitstreams/a61d9638-de05-4aab-9d28-b2cf316e532f/download https://repositorio.unifal-mg.edu.br/bitstreams/51953ab3-d6fe-4ecb-a92f-c2484ceaa51b/download https://repositorio.unifal-mg.edu.br/bitstreams/7af7fbc0-8893-4e0b-8f8b-efe50e3f21a7/download https://repositorio.unifal-mg.edu.br/bitstreams/07ca1946-8b96-40ee-b315-5671e45ca76d/download |
| bitstream.checksum.fl_str_mv |
4afdbb8c545fd630ea7db775da747b2f d41d8cd98f00b204e9800998ecf8427e d41d8cd98f00b204e9800998ecf8427e 31555718c4fc75849dd08f27935d4f6b 8d40024d3dd5ae25146c60d8d3137d34 6241d2c8085289255f073b7f0d075389 fcb0a810cba64c931b745a9b9820c324 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UNIFAL - Universidade Federal de Alfenas (UNIFAL) |
| repository.mail.fl_str_mv |
bdtd@unifal-mg.edu.br || bdtd@unifal-mg.edu.br |
| _version_ |
1850508404554989568 |