Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos
| Ano de defesa: | 2016 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | , |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufms.br/handle/123456789/3000 |
Resumo: | A seleção de instâncias, em apredizado de máquina, procura identificar instâncias relevantes e remover as instâncias que são redundantes ou prejudiciais do conjunto original. Classificadores baseados em instâncias, como o K Vizinhos Mais Próximos (k-NN), são fortemente beneficiados com esta seleção, podendo prover uma classificação mais rápida, uma diminuição nos requisitos de armazenamento e uma diminuição na sensibilidade ao ruído. Um fundamento essencial a esses algoritmos são as métricas de distância entre os exemplos. Nesse trabalho de mestrado, é proposto um algoritmo de seleção de instâncias com aprendizado de métricas denominado Seleção de Instância sobre Aprendizado de Métrica (Instance Selection on Metric Learning, ISML) para o Classificador K Vizinhos Mais Próximos. O método de aprendizado de métricas, chamado de k-Neighborhood Components Analysis (kNCA), é aplicado ao conjunto de dados para melhorar a seleção e reduzir a relação de compromisso (trade-off ) entre número de instâncias de treino e acurácia. Foram realizados experimentos para comparar métodos tradicionais da literatura de seleção de instâncias. Os resultados são promissores principalmente em cenários de redução extrema de exemplos, redução maior que 50% dos dados originais, onde a proposta ISML obtém melhor ROC AUC em 11 dos 12 conjunto de dados quando comparado com outros três métodos de seleção de instância. |
| id |
UFMS_422c1f2cf30ddaab8da17561ba589260 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufms.br:123456789/3000 |
| network_acronym_str |
UFMS |
| network_name_str |
Repositório Institucional da UFMS |
| repository_id_str |
|
| spelling |
2016-12-10T11:26:08Z2021-09-30T19:55:08Z2016https://repositorio.ufms.br/handle/123456789/3000A seleção de instâncias, em apredizado de máquina, procura identificar instâncias relevantes e remover as instâncias que são redundantes ou prejudiciais do conjunto original. Classificadores baseados em instâncias, como o K Vizinhos Mais Próximos (k-NN), são fortemente beneficiados com esta seleção, podendo prover uma classificação mais rápida, uma diminuição nos requisitos de armazenamento e uma diminuição na sensibilidade ao ruído. Um fundamento essencial a esses algoritmos são as métricas de distância entre os exemplos. Nesse trabalho de mestrado, é proposto um algoritmo de seleção de instâncias com aprendizado de métricas denominado Seleção de Instância sobre Aprendizado de Métrica (Instance Selection on Metric Learning, ISML) para o Classificador K Vizinhos Mais Próximos. O método de aprendizado de métricas, chamado de k-Neighborhood Components Analysis (kNCA), é aplicado ao conjunto de dados para melhorar a seleção e reduzir a relação de compromisso (trade-off ) entre número de instâncias de treino e acurácia. Foram realizados experimentos para comparar métodos tradicionais da literatura de seleção de instâncias. Os resultados são promissores principalmente em cenários de redução extrema de exemplos, redução maior que 50% dos dados originais, onde a proposta ISML obtém melhor ROC AUC em 11 dos 12 conjunto de dados quando comparado com outros três métodos de seleção de instância.porComputaçãoComputer scienceSeleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximosinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisMatsubara, Edson TakashiMarcacini, Ricardo MarcondesMax, Eduardo Zárate Guerreiroinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILEduardo Zárate Guerreiro Max.pdf.jpgEduardo Zárate Guerreiro Max.pdf.jpgGenerated Thumbnailimage/jpeg1089https://repositorio.ufms.br/bitstream/123456789/3000/4/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf.jpg30dc0039fd89144b71a54a81ea5f473bMD54ORIGINALEduardo Zárate Guerreiro Max.pdfEduardo Zárate Guerreiro Max.pdfapplication/pdf2562824https://repositorio.ufms.br/bitstream/123456789/3000/1/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf39c3fdc321dda96281b718fd3eec281fMD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufms.br/bitstream/123456789/3000/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTEduardo Zárate Guerreiro Max.pdf.txtEduardo Zárate Guerreiro Max.pdf.txtExtracted texttext/plain0https://repositorio.ufms.br/bitstream/123456789/3000/3/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD53123456789/30002021-09-30 15:55:08.501oai:repositorio.ufms.br:123456789/3000Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242021-09-30T19:55:08Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false |
| dc.title.pt_BR.fl_str_mv |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| title |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| spellingShingle |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos Max, Eduardo Zárate Guerreiro Computação Computer science |
| title_short |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| title_full |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| title_fullStr |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| title_full_unstemmed |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| title_sort |
Seleção de instâncias baseado em aprendizado de métricas para K Vizinhos Mais Próximos |
| author |
Max, Eduardo Zárate Guerreiro |
| author_facet |
Max, Eduardo Zárate Guerreiro |
| author_role |
author |
| dc.contributor.advisor1.fl_str_mv |
Matsubara, Edson Takashi Marcacini, Ricardo Marcondes |
| dc.contributor.author.fl_str_mv |
Max, Eduardo Zárate Guerreiro |
| contributor_str_mv |
Matsubara, Edson Takashi Marcacini, Ricardo Marcondes |
| dc.subject.por.fl_str_mv |
Computação Computer science |
| topic |
Computação Computer science |
| description |
A seleção de instâncias, em apredizado de máquina, procura identificar instâncias relevantes e remover as instâncias que são redundantes ou prejudiciais do conjunto original. Classificadores baseados em instâncias, como o K Vizinhos Mais Próximos (k-NN), são fortemente beneficiados com esta seleção, podendo prover uma classificação mais rápida, uma diminuição nos requisitos de armazenamento e uma diminuição na sensibilidade ao ruído. Um fundamento essencial a esses algoritmos são as métricas de distância entre os exemplos. Nesse trabalho de mestrado, é proposto um algoritmo de seleção de instâncias com aprendizado de métricas denominado Seleção de Instância sobre Aprendizado de Métrica (Instance Selection on Metric Learning, ISML) para o Classificador K Vizinhos Mais Próximos. O método de aprendizado de métricas, chamado de k-Neighborhood Components Analysis (kNCA), é aplicado ao conjunto de dados para melhorar a seleção e reduzir a relação de compromisso (trade-off ) entre número de instâncias de treino e acurácia. Foram realizados experimentos para comparar métodos tradicionais da literatura de seleção de instâncias. Os resultados são promissores principalmente em cenários de redução extrema de exemplos, redução maior que 50% dos dados originais, onde a proposta ISML obtém melhor ROC AUC em 11 dos 12 conjunto de dados quando comparado com outros três métodos de seleção de instância. |
| publishDate |
2016 |
| dc.date.accessioned.fl_str_mv |
2016-12-10T11:26:08Z |
| dc.date.issued.fl_str_mv |
2016 |
| dc.date.available.fl_str_mv |
2021-09-30T19:55:08Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://repositorio.ufms.br/handle/123456789/3000 |
| url |
https://repositorio.ufms.br/handle/123456789/3000 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFMS instname:Universidade Federal de Mato Grosso do Sul (UFMS) instacron:UFMS |
| instname_str |
Universidade Federal de Mato Grosso do Sul (UFMS) |
| instacron_str |
UFMS |
| institution |
UFMS |
| reponame_str |
Repositório Institucional da UFMS |
| collection |
Repositório Institucional da UFMS |
| bitstream.url.fl_str_mv |
https://repositorio.ufms.br/bitstream/123456789/3000/4/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf.jpg https://repositorio.ufms.br/bitstream/123456789/3000/1/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf https://repositorio.ufms.br/bitstream/123456789/3000/2/license.txt https://repositorio.ufms.br/bitstream/123456789/3000/3/Eduardo%20Z%c3%a1rate%20Guerreiro%20Max.pdf.txt |
| bitstream.checksum.fl_str_mv |
30dc0039fd89144b71a54a81ea5f473b 39c3fdc321dda96281b718fd3eec281f 8a4605be74aa9ea9d79846c1fba20a33 d41d8cd98f00b204e9800998ecf8427e |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
| repository.name.fl_str_mv |
Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS) |
| repository.mail.fl_str_mv |
ri.prograd@ufms.br |
| _version_ |
1845881949727490048 |