Classificação de séries temporais baseada em análise de recorrência e extração de características

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: Maggioni e Silva, Angelo
Orientador(a): Ishii, Renato Porfirio
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufms.br/handle/123456789/2967
Resumo: A identificação de padrões em fluxos de dados contínuos tem despertado o interesse científico, seja na detecção de falhas em sistemas, identificação de operações fraudulentas em transações bancárias, propagação de doenças ou ainda na preservação do meio ambiente. A categorização destes dados, concomitante com a ampliação do sensoriamento e monitoramento de diversos outros domínios, motiva a busca por soluções práticas e eficientes que auxiliem na busca por padrões recorrentes. A extração de conhecimento dos dados, quando dependentes do tempo, exige um tratamento especial e a mineração dos dados apresenta-se como uma atividade valiosa. Neste trabalho, é proposta uma abordagem chamada DSP-Class para classificação de séries temporais utilizando Descritores de Textura aplicados em Gráficos de Recorrência (RP). São utilizados 14 conjuntos de dados reais relacionados a vocalizações de aves, identificação de insetos, categorização de reações químicas, dentre outros. O objetivo desta pesquisa é verificar a utilização das características texturais de RPs em algoritmos de aprendizagem, tais como Support Vector Machine (SVM) e C5:0, aplicando a Decomposição de Modo Empírico (EMD) na classificação de séries temporais. Também é analisada a influência estocástica-determinística presentes nos fluxos. Verifica-se desempenho ruim do algoritmo 1NN, considerado estado-da-arte, em séries predominantemente estocásticas ou determinísticas e desempenho 67:66% superior da abordagem DSP-Class, uma vez que as características texturais distinguem classes de séries temporais mais satisfatoriamente que a busca por similaridade utilizada no algoritmo 1NN nos dados analisados. Verifica-se inclusive, resultados 18;67% superiores àqueles obtidos por pesquisas semelhantes que utilizam outras características presentes em séries temporais.
id UFMS_ca0c0af5907d45df1d767cb124a67ee7
oai_identifier_str oai:repositorio.ufms.br:123456789/2967
network_acronym_str UFMS
network_name_str Repositório Institucional da UFMS
repository_id_str
spelling 2016-11-16T13:24:51Z2021-09-30T19:55:55Z2016https://repositorio.ufms.br/handle/123456789/2967A identificação de padrões em fluxos de dados contínuos tem despertado o interesse científico, seja na detecção de falhas em sistemas, identificação de operações fraudulentas em transações bancárias, propagação de doenças ou ainda na preservação do meio ambiente. A categorização destes dados, concomitante com a ampliação do sensoriamento e monitoramento de diversos outros domínios, motiva a busca por soluções práticas e eficientes que auxiliem na busca por padrões recorrentes. A extração de conhecimento dos dados, quando dependentes do tempo, exige um tratamento especial e a mineração dos dados apresenta-se como uma atividade valiosa. Neste trabalho, é proposta uma abordagem chamada DSP-Class para classificação de séries temporais utilizando Descritores de Textura aplicados em Gráficos de Recorrência (RP). São utilizados 14 conjuntos de dados reais relacionados a vocalizações de aves, identificação de insetos, categorização de reações químicas, dentre outros. O objetivo desta pesquisa é verificar a utilização das características texturais de RPs em algoritmos de aprendizagem, tais como Support Vector Machine (SVM) e C5:0, aplicando a Decomposição de Modo Empírico (EMD) na classificação de séries temporais. Também é analisada a influência estocástica-determinística presentes nos fluxos. Verifica-se desempenho ruim do algoritmo 1NN, considerado estado-da-arte, em séries predominantemente estocásticas ou determinísticas e desempenho 67:66% superior da abordagem DSP-Class, uma vez que as características texturais distinguem classes de séries temporais mais satisfatoriamente que a busca por similaridade utilizada no algoritmo 1NN nos dados analisados. Verifica-se inclusive, resultados 18;67% superiores àqueles obtidos por pesquisas semelhantes que utilizam outras características presentes em séries temporais.ABSTRACT - Identify patterns in continuous data streams has attracted scientific interest for detecting system failures, identify fraudulent transactions in banks, the spread of diseases and also in the preservation of the environment. The increased volume of data produced in the last decade, concomitant with the number of sensors motivates the search for practical and efficient solutions that help data categorization. The extraction of knowledge about them, when time-dependent, requires special treatment and mining data becomes a valuable activity. In this paper, we propose an approach called DSP-Class for time series classification using texture descriptors applied Recurrence Charts (RP). We adopt 14 real datasets related to sound recognition, signals processing, chemical reactions and another produced by Big Data which demand high processing capacity. The purpose of this research is to verify the use of textural features in machine learning algorithms, such as SVM and C 5:0, applying Decomposition Empirical Mode (EMD) in time series classification. It is also analysed the stochastic-deterministic influence present in data streams. It presented poor results of 1-Nearest Neighbour algorithm when the data stream is mostly deterministic or stochastic. Our approach outperforms a traditional preprocessing approach applied on an audio stream using coefficients as features in around 18;67% of average accuracy and in around 67;66% the state-of-art algorithm that uses distance as measure.porAnálise de Séries TemporaisAlgorítmos ComputacionaisComputaçãoComputer ScienceTime-Series AnalysisComputer AlgorithmsClassificação de séries temporais baseada em análise de recorrência e extração de característicasinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisIshii, Renato PorfirioMaggioni e Silva, Angeloinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFMSinstname:Universidade Federal de Mato Grosso do Sul (UFMS)instacron:UFMSTHUMBNAILAngelo Maggioni e Silva.pdf.jpgAngelo Maggioni e Silva.pdf.jpgGenerated Thumbnailimage/jpeg1079https://repositorio.ufms.br/bitstream/123456789/2967/4/Angelo%20Maggioni%20e%20Silva.pdf.jpg63671938441c5ab748d553d97e9cbebfMD54ORIGINALAngelo Maggioni e Silva.pdfAngelo Maggioni e Silva.pdfapplication/pdf3001882https://repositorio.ufms.br/bitstream/123456789/2967/1/Angelo%20Maggioni%20e%20Silva.pdf14ada41c8c36a719de40a8ec2c9915f2MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://repositorio.ufms.br/bitstream/123456789/2967/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTAngelo Maggioni e Silva.pdf.txtAngelo Maggioni e Silva.pdf.txtExtracted texttext/plain0https://repositorio.ufms.br/bitstream/123456789/2967/3/Angelo%20Maggioni%20e%20Silva.pdf.txtd41d8cd98f00b204e9800998ecf8427eMD53123456789/29672021-09-30 15:55:55.222oai:repositorio.ufms.br:123456789/2967Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufms.br/oai/requestri.prograd@ufms.bropendoar:21242021-09-30T19:55:55Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)false
dc.title.pt_BR.fl_str_mv Classificação de séries temporais baseada em análise de recorrência e extração de características
title Classificação de séries temporais baseada em análise de recorrência e extração de características
spellingShingle Classificação de séries temporais baseada em análise de recorrência e extração de características
Maggioni e Silva, Angelo
Análise de Séries Temporais
Algorítmos Computacionais
Computação
Computer Science
Time-Series Analysis
Computer Algorithms
title_short Classificação de séries temporais baseada em análise de recorrência e extração de características
title_full Classificação de séries temporais baseada em análise de recorrência e extração de características
title_fullStr Classificação de séries temporais baseada em análise de recorrência e extração de características
title_full_unstemmed Classificação de séries temporais baseada em análise de recorrência e extração de características
title_sort Classificação de séries temporais baseada em análise de recorrência e extração de características
author Maggioni e Silva, Angelo
author_facet Maggioni e Silva, Angelo
author_role author
dc.contributor.advisor1.fl_str_mv Ishii, Renato Porfirio
dc.contributor.author.fl_str_mv Maggioni e Silva, Angelo
contributor_str_mv Ishii, Renato Porfirio
dc.subject.por.fl_str_mv Análise de Séries Temporais
Algorítmos Computacionais
Computação
Computer Science
Time-Series Analysis
Computer Algorithms
topic Análise de Séries Temporais
Algorítmos Computacionais
Computação
Computer Science
Time-Series Analysis
Computer Algorithms
description A identificação de padrões em fluxos de dados contínuos tem despertado o interesse científico, seja na detecção de falhas em sistemas, identificação de operações fraudulentas em transações bancárias, propagação de doenças ou ainda na preservação do meio ambiente. A categorização destes dados, concomitante com a ampliação do sensoriamento e monitoramento de diversos outros domínios, motiva a busca por soluções práticas e eficientes que auxiliem na busca por padrões recorrentes. A extração de conhecimento dos dados, quando dependentes do tempo, exige um tratamento especial e a mineração dos dados apresenta-se como uma atividade valiosa. Neste trabalho, é proposta uma abordagem chamada DSP-Class para classificação de séries temporais utilizando Descritores de Textura aplicados em Gráficos de Recorrência (RP). São utilizados 14 conjuntos de dados reais relacionados a vocalizações de aves, identificação de insetos, categorização de reações químicas, dentre outros. O objetivo desta pesquisa é verificar a utilização das características texturais de RPs em algoritmos de aprendizagem, tais como Support Vector Machine (SVM) e C5:0, aplicando a Decomposição de Modo Empírico (EMD) na classificação de séries temporais. Também é analisada a influência estocástica-determinística presentes nos fluxos. Verifica-se desempenho ruim do algoritmo 1NN, considerado estado-da-arte, em séries predominantemente estocásticas ou determinísticas e desempenho 67:66% superior da abordagem DSP-Class, uma vez que as características texturais distinguem classes de séries temporais mais satisfatoriamente que a busca por similaridade utilizada no algoritmo 1NN nos dados analisados. Verifica-se inclusive, resultados 18;67% superiores àqueles obtidos por pesquisas semelhantes que utilizam outras características presentes em séries temporais.
publishDate 2016
dc.date.accessioned.fl_str_mv 2016-11-16T13:24:51Z
dc.date.issued.fl_str_mv 2016
dc.date.available.fl_str_mv 2021-09-30T19:55:55Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufms.br/handle/123456789/2967
url https://repositorio.ufms.br/handle/123456789/2967
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFMS
instname:Universidade Federal de Mato Grosso do Sul (UFMS)
instacron:UFMS
instname_str Universidade Federal de Mato Grosso do Sul (UFMS)
instacron_str UFMS
institution UFMS
reponame_str Repositório Institucional da UFMS
collection Repositório Institucional da UFMS
bitstream.url.fl_str_mv https://repositorio.ufms.br/bitstream/123456789/2967/4/Angelo%20Maggioni%20e%20Silva.pdf.jpg
https://repositorio.ufms.br/bitstream/123456789/2967/1/Angelo%20Maggioni%20e%20Silva.pdf
https://repositorio.ufms.br/bitstream/123456789/2967/2/license.txt
https://repositorio.ufms.br/bitstream/123456789/2967/3/Angelo%20Maggioni%20e%20Silva.pdf.txt
bitstream.checksum.fl_str_mv 63671938441c5ab748d553d97e9cbebf
14ada41c8c36a719de40a8ec2c9915f2
8a4605be74aa9ea9d79846c1fba20a33
d41d8cd98f00b204e9800998ecf8427e
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFMS - Universidade Federal de Mato Grosso do Sul (UFMS)
repository.mail.fl_str_mv ri.prograd@ufms.br
_version_ 1845881966839201792