Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/54702 |
Resumo: | The Fifth Generation of mobile networks (5G) seeks to support a diversity of applications categorized into three types: enhanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC), and Ultra Reliable Low Latency Communications (URLLC), being their coexistence a major challenge. Multi-access Edge Computing (MEC), Network Function Virtualization (NFV) and Network Slicing (NS) emerge as complementary paradigms that shall support both eMBB and URLLC by offering fine-grained on-demand distributed resources closer to the User Equipment (UE) with a shared utilization of physical infrastructure. In this work, we have addressed the combination of MEC, NFV, NS and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in the network edge core. Thus, we have designed an analytical model to evaluate how requests are managed by the virtualization resources of a single MEC node, with a primary focus on meeting the requirements of both eMBB and URLLC services. We proposed a CTMC-based model to characterize dynamic virtual resource allocation and incorporated five performance metrics, which are relevant not only for URLLC and eMBB services (e.g., availability and response time) but also for service providers (e.g., power consumption), integrating practical factors like resource failures, service prioritization, and setup (repair) times into the formulation. This model enables an understanding of how the 5G network core behaves in serving different service categories by applying service prioritization to efficiently share processing resources. Some of our key findings include the idea that higher eMBB arrival rates decrease availability and increase response times up to 300 ms, while URLLC availability remains stable. Moreover, the container setup rates and failure rates substantially affect both availability and response times, with higher setup rates enhancing availability by up to 30% and reducing response times by 60%. Also, the number of containers emerges as a significant factor, enhancing both availability and response times, while buffer sizes mainly impact response times. In brief, our work advances in the current state of the art of the MEC-NFV domain by providing valuable insights for the design of MEC-NFV architecture, business models, and mechanisms to address communication constraints. |
| id |
UFPE_27dc340d0af163ba0fbfecc3027a253f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/54702 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks5GURLLCeMBBMECNFVAlocação de recursosThe Fifth Generation of mobile networks (5G) seeks to support a diversity of applications categorized into three types: enhanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC), and Ultra Reliable Low Latency Communications (URLLC), being their coexistence a major challenge. Multi-access Edge Computing (MEC), Network Function Virtualization (NFV) and Network Slicing (NS) emerge as complementary paradigms that shall support both eMBB and URLLC by offering fine-grained on-demand distributed resources closer to the User Equipment (UE) with a shared utilization of physical infrastructure. In this work, we have addressed the combination of MEC, NFV, NS and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in the network edge core. Thus, we have designed an analytical model to evaluate how requests are managed by the virtualization resources of a single MEC node, with a primary focus on meeting the requirements of both eMBB and URLLC services. We proposed a CTMC-based model to characterize dynamic virtual resource allocation and incorporated five performance metrics, which are relevant not only for URLLC and eMBB services (e.g., availability and response time) but also for service providers (e.g., power consumption), integrating practical factors like resource failures, service prioritization, and setup (repair) times into the formulation. This model enables an understanding of how the 5G network core behaves in serving different service categories by applying service prioritization to efficiently share processing resources. Some of our key findings include the idea that higher eMBB arrival rates decrease availability and increase response times up to 300 ms, while URLLC availability remains stable. Moreover, the container setup rates and failure rates substantially affect both availability and response times, with higher setup rates enhancing availability by up to 30% and reducing response times by 60%. Also, the number of containers emerges as a significant factor, enhancing both availability and response times, while buffer sizes mainly impact response times. In brief, our work advances in the current state of the art of the MEC-NFV domain by providing valuable insights for the design of MEC-NFV architecture, business models, and mechanisms to address communication constraints.A Quinta Geração de redes móveis (5G) busca suportar diversas aplicações categorizadas em três tipos: largura de banda móvel melhorada (eMBB), comunicação do tipo máquina mas- siva (mMTC) e comunicação com baixa latência e confiabilidade muito alta (URLLC), em que a coexistência delas é um grande desafio. A computação de borda multiacesso (MEC), virtualização de funções de rede (NFV) e o fatiamento de rede (NS) surgem como paradig- mas complementares para assistir tanto serviços eMBB quanto URLLC, oferecendo recursos distribuídos sob demanda e de maneira otimizada, mais próximos do equipamento do usuário (UE), com utilização compartilhada da infraestrutura física. Este trabalho explora a integração de MEC, NFV, NS e alocação dinâmica de recursos virtuais para endereçar o problema de di- mensionamento na rede de borda. Para isso, utiliza-se um modelo analítico para avaliar como as solicitações são gerenciadas pelos recursos de virtualização em um único nó MEC, com ên- fase nos requisitos dos serviços eMBB e URLLC. Um modelo baseado em CTMC foi proposto para caracterizar a alocação dinâmica de recursos virtuais e a derivaçao de cinco métricas de desempenho é realizada, as quais são relevantes não apenas para serviços URLLC e eMBB (e.g., disponibilidade e tempo de resposta), mas também para provedores de serviços (e.g., consumo de energia). Além disso, o modelo integra fatores práticos como falhas nos recursos, priorização de serviços e tempos de configuração e reparo na formulação. Desta forma, o mod- elo permite compreender como o núcleo da rede 5G se comporta no atendimento a diferentes categorias de serviços, aplicando a priorização de serviços para compartilhar eficientemente os recursos de processamento. Algumas descobertas incluem a ideia de que taxas mais altas de chegada eMBB diminuem a disponibilidade e aumentam os tempos de resposta para até 300 ms, enquanto a disponibilidade para URLLC permanece estável. Além disso, as taxas de configuração de contêineres e as taxas de falhas afetam substancialmente a disponibilidade e os tempos de resposta, com taxas de configuração mais altas aumentando a disponibilidade em até 30% e reduzindo os tempos de resposta em 60%. Ademais, o número de contentores surge como um fator significativo, melhorando tanto a disponibilidade como os tempos de resposta, enquanto os tamanhos dos buffers afetam principalmente os tempos de resposta. Em resumo, nosso trabalho avança no estado da arte atual do domínio MEC-NFV, fornecendo insights valiosos para o dimensionamento da arquitetura MEC-NFV, modelos de negócios e mecanismos para lidar com alocação de recursos sob diferentes restrições de comunicação.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoBALIEIRO, Andson MarreirosFALCÃO, Marcos Rocha de Moraeshttp://lattes.cnpq.br/5915479506163386http://lattes.cnpq.br/9825617657358787http://lattes.cnpq.br/0796298494476092SOUZA, Caio Bruno Bezerra de2024-01-23T16:16:57Z2024-01-23T16:16:57Z2023-09-29info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfSOUZA, Caio Bruno Bezerra de. Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/54702engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-01-24T05:22:14Zoai:repositorio.ufpe.br:123456789/54702Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-01-24T05:22:14Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| title |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| spellingShingle |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks SOUZA, Caio Bruno Bezerra de 5G URLLC eMBB MEC NFV Alocação de recursos |
| title_short |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| title_full |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| title_fullStr |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| title_full_unstemmed |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| title_sort |
Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks |
| author |
SOUZA, Caio Bruno Bezerra de |
| author_facet |
SOUZA, Caio Bruno Bezerra de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
BALIEIRO, Andson Marreiros FALCÃO, Marcos Rocha de Moraes http://lattes.cnpq.br/5915479506163386 http://lattes.cnpq.br/9825617657358787 http://lattes.cnpq.br/0796298494476092 |
| dc.contributor.author.fl_str_mv |
SOUZA, Caio Bruno Bezerra de |
| dc.subject.por.fl_str_mv |
5G URLLC eMBB MEC NFV Alocação de recursos |
| topic |
5G URLLC eMBB MEC NFV Alocação de recursos |
| description |
The Fifth Generation of mobile networks (5G) seeks to support a diversity of applications categorized into three types: enhanced Mobile Broadband (eMBB), massive Machine Type Communications (mMTC), and Ultra Reliable Low Latency Communications (URLLC), being their coexistence a major challenge. Multi-access Edge Computing (MEC), Network Function Virtualization (NFV) and Network Slicing (NS) emerge as complementary paradigms that shall support both eMBB and URLLC by offering fine-grained on-demand distributed resources closer to the User Equipment (UE) with a shared utilization of physical infrastructure. In this work, we have addressed the combination of MEC, NFV, NS and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in the network edge core. Thus, we have designed an analytical model to evaluate how requests are managed by the virtualization resources of a single MEC node, with a primary focus on meeting the requirements of both eMBB and URLLC services. We proposed a CTMC-based model to characterize dynamic virtual resource allocation and incorporated five performance metrics, which are relevant not only for URLLC and eMBB services (e.g., availability and response time) but also for service providers (e.g., power consumption), integrating practical factors like resource failures, service prioritization, and setup (repair) times into the formulation. This model enables an understanding of how the 5G network core behaves in serving different service categories by applying service prioritization to efficiently share processing resources. Some of our key findings include the idea that higher eMBB arrival rates decrease availability and increase response times up to 300 ms, while URLLC availability remains stable. Moreover, the container setup rates and failure rates substantially affect both availability and response times, with higher setup rates enhancing availability by up to 30% and reducing response times by 60%. Also, the number of containers emerges as a significant factor, enhancing both availability and response times, while buffer sizes mainly impact response times. In brief, our work advances in the current state of the art of the MEC-NFV domain by providing valuable insights for the design of MEC-NFV architecture, business models, and mechanisms to address communication constraints. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-09-29 2024-01-23T16:16:57Z 2024-01-23T16:16:57Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
SOUZA, Caio Bruno Bezerra de. Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. https://repositorio.ufpe.br/handle/123456789/54702 |
| identifier_str_mv |
SOUZA, Caio Bruno Bezerra de. Dynamic resource allocation for URLLC and eMBB services in NFV-MEC 5G networks. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023. |
| url |
https://repositorio.ufpe.br/handle/123456789/54702 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042061783891968 |