Resource allocation for URLLC in NFV-MEC

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: FALCÃO, Marcos Rocha de Moraes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/45633
Resumo: Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) emerge as complementary paradigms that shall support Ultra-reliable Low Latency Communication (URLLC) by offering fine-grained on-demand distributed resources closer to the User Equip- ment (UE), thus mitigating physical layer issues. On the other hand, the adoption of the NFV-MEC inevitably raises deployment and operation costs. We have addressed the combina- tion of MEC, NFV and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in a special scenario were MEC infrastructure is mounted over Un- manned Aerial Vehicles (UAVs) in the context of URLLC. First, a Continuous-time Markov Chain (CTMC)-based model was proposed to characterize dynamic virtual resource allocation in the MEC node together with four performance metrics that are both relevant for URLLC applications (e.g., reliability and response time) and for service providers (e.g., availability and power consumption). In order to yield the model more practical, the effect of virtual host resource failures, setup (repair) times and processing overheads were embedded into the for- mulation, since they may significantly affect the stringent requirements of URLLC applications. Moreover, a multi-objective problem related to MEC-enabled UAV node dimensioning in terms of virtual resources (VMs, containers and buffer positions) was formulated. In this context, the compromise between on-board computation resources and the URLLC requirements become a great challenge since UAVs are limited due to their size, weight and power, which imposes a burden on the conventional Network Functions (NFs). Finally, an approach based on Genetic Algorithms (GA) was formulated to solve the dimensioning problem, with the proposed scheme achieving a better tradeoff in terms of availability, reliability, power consumption and response time compared to the commonly adopted approaches based on the First-fit strategy.
id UFPE_a5a8edd9eef112d805157eee72065114
oai_identifier_str oai:repositorio.ufpe.br:123456789/45633
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Resource allocation for URLLC in NFV-MECRede de computadores e sistemas distribuídosComputação de borda multiacessoVirtualização de funções de redeAlocação de recursosMulti-access Edge Computing (MEC) and Network Function Virtualization (NFV) emerge as complementary paradigms that shall support Ultra-reliable Low Latency Communication (URLLC) by offering fine-grained on-demand distributed resources closer to the User Equip- ment (UE), thus mitigating physical layer issues. On the other hand, the adoption of the NFV-MEC inevitably raises deployment and operation costs. We have addressed the combina- tion of MEC, NFV and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in a special scenario were MEC infrastructure is mounted over Un- manned Aerial Vehicles (UAVs) in the context of URLLC. First, a Continuous-time Markov Chain (CTMC)-based model was proposed to characterize dynamic virtual resource allocation in the MEC node together with four performance metrics that are both relevant for URLLC applications (e.g., reliability and response time) and for service providers (e.g., availability and power consumption). In order to yield the model more practical, the effect of virtual host resource failures, setup (repair) times and processing overheads were embedded into the for- mulation, since they may significantly affect the stringent requirements of URLLC applications. Moreover, a multi-objective problem related to MEC-enabled UAV node dimensioning in terms of virtual resources (VMs, containers and buffer positions) was formulated. In this context, the compromise between on-board computation resources and the URLLC requirements become a great challenge since UAVs are limited due to their size, weight and power, which imposes a burden on the conventional Network Functions (NFs). Finally, an approach based on Genetic Algorithms (GA) was formulated to solve the dimensioning problem, with the proposed scheme achieving a better tradeoff in terms of availability, reliability, power consumption and response time compared to the commonly adopted approaches based on the First-fit strategy.A Computação de Borda Multiacesso (MEC) e a Virtualização de Funções de Rede (NFV) surgem como paradigmas complementares que devem suportar a Comunicação de Baixa Latên- cia Ultraconfiável (URLLC), oferecendo recursos distribuídos sob demanda de forma granular e mais próximos do Equipamento do Usuário (UE), mitigando assim os problemas da camada física. Por outro lado, a adoção do NFV-MEC inevitavelmente eleva os custos de implantação e operação devido a distribuição dos recursos. Abordamos a combinação de MEC, NFV e alo- cação dinâmica de recursos virtuais para superar o problema de dimensionamento de recursos em um cenário especial onde a infraestrutura MEC é montada sobre Veículos Aéreos Não Trip- ulados (UAVs) no contexto de URLLC. Primeiro, um modelo baseado em Cadeias de Markov de Tempo Contínuo (CTMC) foi proposto para caracterizar a alocação dinâmica de recursos virtuais no nó MEC juntamente com quatro métricas de desempenho que são relevantes tanto para aplicações URLLC (por exemplo, confiabilidade e tempo de resposta) quanto para prove- dores de serviços (por exemplo, disponibilidade e consumo de energia ). Para tornar o modelo mais prático, o efeito de falhas de recursos de host virtual, tempos de configuração (reparo) e sobrecargas de processamento foram incorporados à formulação, uma vez que podem afetar significativamente os requisitos rigorosos de URLLC. Além disso, foi formulado um problema multiobjetivo relacionado ao dimensionamento de nós UAV habilitados para MEC em termos de recursos virtuais (VMs, contêineres e posições de buffer). Nesse contexto, o compromisso entre os recursos computacionais de bordo e os requisitos de URLLC torna-se um grande de- safio, uma vez que os UAVs são limitados devido ao seu tamanho, peso e potência, o que impõe um ônus às funções de rede (NFs) convencionais. Por fim, uma abordagem baseada em Algoritmos Genéticos (GA) foi formulada para resolver o problema de dimensionamento com os esquemas propostos alcançando um melhor compromisso em termos de disponibilidade, confiabilidade, consumo de energia e tempo de resposta em comparação com as abordagens baseadas na estratégia First-fit que é comumente usada por outros autores.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoDIAS, Kelvin LopesBALIEIRO, Andson Marreiroshttp://lattes.cnpq.br/0796298494476092http://lattes.cnpq.br/8664169441117482http://lattes.cnpq.br/9825617657358787FALCÃO, Marcos Rocha de Moraes2022-08-11T15:20:57Z2022-08-11T15:20:57Z2022-03-14info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFALCÃO, Marcos Rocha de Moraes. Resource allocation for URLLC in NFV-MEC. 2022. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/45633enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-08-12T05:15:37Zoai:repositorio.ufpe.br:123456789/45633Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-08-12T05:15:37Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Resource allocation for URLLC in NFV-MEC
title Resource allocation for URLLC in NFV-MEC
spellingShingle Resource allocation for URLLC in NFV-MEC
FALCÃO, Marcos Rocha de Moraes
Rede de computadores e sistemas distribuídos
Computação de borda multiacesso
Virtualização de funções de rede
Alocação de recursos
title_short Resource allocation for URLLC in NFV-MEC
title_full Resource allocation for URLLC in NFV-MEC
title_fullStr Resource allocation for URLLC in NFV-MEC
title_full_unstemmed Resource allocation for URLLC in NFV-MEC
title_sort Resource allocation for URLLC in NFV-MEC
author FALCÃO, Marcos Rocha de Moraes
author_facet FALCÃO, Marcos Rocha de Moraes
author_role author
dc.contributor.none.fl_str_mv DIAS, Kelvin Lopes
BALIEIRO, Andson Marreiros
http://lattes.cnpq.br/0796298494476092
http://lattes.cnpq.br/8664169441117482
http://lattes.cnpq.br/9825617657358787
dc.contributor.author.fl_str_mv FALCÃO, Marcos Rocha de Moraes
dc.subject.por.fl_str_mv Rede de computadores e sistemas distribuídos
Computação de borda multiacesso
Virtualização de funções de rede
Alocação de recursos
topic Rede de computadores e sistemas distribuídos
Computação de borda multiacesso
Virtualização de funções de rede
Alocação de recursos
description Multi-access Edge Computing (MEC) and Network Function Virtualization (NFV) emerge as complementary paradigms that shall support Ultra-reliable Low Latency Communication (URLLC) by offering fine-grained on-demand distributed resources closer to the User Equip- ment (UE), thus mitigating physical layer issues. On the other hand, the adoption of the NFV-MEC inevitably raises deployment and operation costs. We have addressed the combina- tion of MEC, NFV and dynamic virtual resource allocation in order to overcome the problem of resource dimensioning in a special scenario were MEC infrastructure is mounted over Un- manned Aerial Vehicles (UAVs) in the context of URLLC. First, a Continuous-time Markov Chain (CTMC)-based model was proposed to characterize dynamic virtual resource allocation in the MEC node together with four performance metrics that are both relevant for URLLC applications (e.g., reliability and response time) and for service providers (e.g., availability and power consumption). In order to yield the model more practical, the effect of virtual host resource failures, setup (repair) times and processing overheads were embedded into the for- mulation, since they may significantly affect the stringent requirements of URLLC applications. Moreover, a multi-objective problem related to MEC-enabled UAV node dimensioning in terms of virtual resources (VMs, containers and buffer positions) was formulated. In this context, the compromise between on-board computation resources and the URLLC requirements become a great challenge since UAVs are limited due to their size, weight and power, which imposes a burden on the conventional Network Functions (NFs). Finally, an approach based on Genetic Algorithms (GA) was formulated to solve the dimensioning problem, with the proposed scheme achieving a better tradeoff in terms of availability, reliability, power consumption and response time compared to the commonly adopted approaches based on the First-fit strategy.
publishDate 2022
dc.date.none.fl_str_mv 2022-08-11T15:20:57Z
2022-08-11T15:20:57Z
2022-03-14
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FALCÃO, Marcos Rocha de Moraes. Resource allocation for URLLC in NFV-MEC. 2022. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.
https://repositorio.ufpe.br/handle/123456789/45633
identifier_str_mv FALCÃO, Marcos Rocha de Moraes. Resource allocation for URLLC in NFV-MEC. 2022. Tese (Doutorado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/45633
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042051236265984