A convolutional neural network approach for speech quality assesment

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: ALBUQUERQUE, Renato Quirino de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/38524
Resumo: An important aspect of speech understanding is quality, which can be defined as the fidelity of the signal in relation to its original (or idealized) version when a comparison is allowed. Despite being a subjective issue, there are approaches to measuring speech quality. The most effective approach consists of applying subjective tests, in which individuals evaluate the quality of the speech samples, associating them with quality indexes. However, there are automatic measurement applications that operate at lower costs and generate faster responses. Such solutions can be divided into methodologies that use only the sample to be evaluated (non-reference) and those that use the degraded and reference versions of the speech sample (full-reference). Unfortunately, for many current applications, it is impossible to obtain the original speech sample, requiring the development and application of non-reference techniques. Thus, this dissertation presents a model of convolutional neural network for speech quality assessment (CNN-SQA). This is a non-reference methodology that applies fully convolutional layers as extractors of characteristics for speech representation. In addition, fully-connected layers are used to perform the quality assessment step. For the entry of the model, some visual characteristics were evaluated, despite the use of MFCC coefficients having presented the best results. Other parameters of the new model were obtained through an iterative and incremental parameter selection process. The performance of the model was evaluated by comparing it with the PESQ, ViSQOL and P.563 methodologies. Other experiments present analyzes of the model’s behavior in isolated situations of speech and noise. The experiments were carried out on publicly available databases, as well as on a new database built to evaluate the new methodology in the context of background noise. Finally, the results were analyzed using correlation measures and statistical descriptions.
id UFPE_2c015cf28f9fb2d4eb0c66c2f59ef5e7
oai_identifier_str oai:repositorio.ufpe.br:123456789/38524
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling A convolutional neural network approach for speech quality assesmentCiência da computaçãoRedes neurais convolucionaisAn important aspect of speech understanding is quality, which can be defined as the fidelity of the signal in relation to its original (or idealized) version when a comparison is allowed. Despite being a subjective issue, there are approaches to measuring speech quality. The most effective approach consists of applying subjective tests, in which individuals evaluate the quality of the speech samples, associating them with quality indexes. However, there are automatic measurement applications that operate at lower costs and generate faster responses. Such solutions can be divided into methodologies that use only the sample to be evaluated (non-reference) and those that use the degraded and reference versions of the speech sample (full-reference). Unfortunately, for many current applications, it is impossible to obtain the original speech sample, requiring the development and application of non-reference techniques. Thus, this dissertation presents a model of convolutional neural network for speech quality assessment (CNN-SQA). This is a non-reference methodology that applies fully convolutional layers as extractors of characteristics for speech representation. In addition, fully-connected layers are used to perform the quality assessment step. For the entry of the model, some visual characteristics were evaluated, despite the use of MFCC coefficients having presented the best results. Other parameters of the new model were obtained through an iterative and incremental parameter selection process. The performance of the model was evaluated by comparing it with the PESQ, ViSQOL and P.563 methodologies. Other experiments present analyzes of the model’s behavior in isolated situations of speech and noise. The experiments were carried out on publicly available databases, as well as on a new database built to evaluate the new methodology in the context of background noise. Finally, the results were analyzed using correlation measures and statistical descriptions.Um aspecto importante do entendimento da fala é a qualidade, esta pode ser entendida como a fidelidade do sinal em relação à sua versão original (ou idealizada) quando uma comparação é permitida. Apesar de ser uma questão subjetiva, existem abordagens para medir a qualidade de fala. A abordagem mais eficaz consiste na aplicação de testes subjetivos, nos quais os indivíduos avaliam a qualidade de amostras de fala, associando-as a índicies de qualidade. No entanto, existem aplicações de medição automática que operam a custos mais baixos e geram respostas mais rápidas. Tais soluções podem ser divididas em metodologias que usam apenas a amostra a ser avaliada (non-reference) e aquelas que usam as versões degradada e de referência da amostra de fala (full-reference). Infelizmente, para muitas aplicações atuais, é impossível obter a amostra de fala original, contribuindo para o desenvolvimento e a aplicação de técnicas (non-reference). Assim, esta dissertação apresenta um modelo de rede neural convolucional para avaliação da qualidade de fala (CNN-SQA). Essa é uma metodologia (non-reference) que aplica camadas completamente convolucionais como extratores de características para representação da fala. Além disso, camadas completamente conectadas são utilizadas para executar a etapa de avaliação de qualidade. Para a entrada do modelo algumas características visuais foram avaliadas, apesar do uso de coeficientes MFCC ter apresentado os melhores resultados. Outros parâmetros do novo modelo foram obtidos através de um processo iterativo e incremental de seleção de parâmetros. O desempenho do modelo foi avaliado comparando-o com as metodologias PESQ, ViSQOL e P.563. Outros experimentos apresentam análises do comportamento do modelo em situações isoladas de fala e ruído. Os experimentos foram realizados em bancos de dados publicamente disponíveis, bem como em um novo banco de dados construído para avaliar a nova metodologia no contexto de ruído de fundo. Por fim, os resultados foram analisados usando medidas de correlação e descrições estatísticas.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMELLO, Carlos Alexandre Barros dehttp://lattes.cnpq.br/8473935466226177http://lattes.cnpq.br/2248591013863307ALBUQUERQUE, Renato Quirino de2020-11-09T12:00:01Z2020-11-09T12:00:01Z2020-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfALBUQUERQUE, Renato Quirino de. A convolutional neural network approach for speech quality assesment. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38524porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-11-10T05:16:59Zoai:repositorio.ufpe.br:123456789/38524Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-10T05:16:59Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A convolutional neural network approach for speech quality assesment
title A convolutional neural network approach for speech quality assesment
spellingShingle A convolutional neural network approach for speech quality assesment
ALBUQUERQUE, Renato Quirino de
Ciência da computação
Redes neurais convolucionais
title_short A convolutional neural network approach for speech quality assesment
title_full A convolutional neural network approach for speech quality assesment
title_fullStr A convolutional neural network approach for speech quality assesment
title_full_unstemmed A convolutional neural network approach for speech quality assesment
title_sort A convolutional neural network approach for speech quality assesment
author ALBUQUERQUE, Renato Quirino de
author_facet ALBUQUERQUE, Renato Quirino de
author_role author
dc.contributor.none.fl_str_mv MELLO, Carlos Alexandre Barros de
http://lattes.cnpq.br/8473935466226177
http://lattes.cnpq.br/2248591013863307
dc.contributor.author.fl_str_mv ALBUQUERQUE, Renato Quirino de
dc.subject.por.fl_str_mv Ciência da computação
Redes neurais convolucionais
topic Ciência da computação
Redes neurais convolucionais
description An important aspect of speech understanding is quality, which can be defined as the fidelity of the signal in relation to its original (or idealized) version when a comparison is allowed. Despite being a subjective issue, there are approaches to measuring speech quality. The most effective approach consists of applying subjective tests, in which individuals evaluate the quality of the speech samples, associating them with quality indexes. However, there are automatic measurement applications that operate at lower costs and generate faster responses. Such solutions can be divided into methodologies that use only the sample to be evaluated (non-reference) and those that use the degraded and reference versions of the speech sample (full-reference). Unfortunately, for many current applications, it is impossible to obtain the original speech sample, requiring the development and application of non-reference techniques. Thus, this dissertation presents a model of convolutional neural network for speech quality assessment (CNN-SQA). This is a non-reference methodology that applies fully convolutional layers as extractors of characteristics for speech representation. In addition, fully-connected layers are used to perform the quality assessment step. For the entry of the model, some visual characteristics were evaluated, despite the use of MFCC coefficients having presented the best results. Other parameters of the new model were obtained through an iterative and incremental parameter selection process. The performance of the model was evaluated by comparing it with the PESQ, ViSQOL and P.563 methodologies. Other experiments present analyzes of the model’s behavior in isolated situations of speech and noise. The experiments were carried out on publicly available databases, as well as on a new database built to evaluate the new methodology in the context of background noise. Finally, the results were analyzed using correlation measures and statistical descriptions.
publishDate 2020
dc.date.none.fl_str_mv 2020-11-09T12:00:01Z
2020-11-09T12:00:01Z
2020-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv ALBUQUERQUE, Renato Quirino de. A convolutional neural network approach for speech quality assesment. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
https://repositorio.ufpe.br/handle/123456789/38524
identifier_str_mv ALBUQUERQUE, Renato Quirino de. A convolutional neural network approach for speech quality assesment. 2020. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/38524
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042054376751104