The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: TORREÃO, Vítor de Albuquerque
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/34516
Resumo: Knowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets.
id UFPE_2d459d73bbd1fda0f260f664566be57d
oai_identifier_str oai:repositorio.ufpe.br:123456789/34516
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasetsInteligência artificialAprendizagem de máquinaMineração de dadosKnowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets.Descoberta de Conhecimento em Bases de Dados (KDD) é uma área ampla em Inteligência Artificial que se preocupa com a extração de informações e insights úteis a partir de um conjunto de dados. Dentre as diferentes metodologias de extração, uma importante subclasse de tarefas de KDD, chamada de Descoberta de Subgrupos (SD), lida com a descoberta de subconjuntos interessantes dentro dos dados. Vários Algoritmos Evolucionários (EAs) foram propostos para resolver a tarefa de descobrir subgrupos com sucesso considerável em bases de dados de baixa dimensionalidade. A literatura já mostrou, no entanto, que alguns desses tem uma performance baixa em problemas de alta dimensionalidade. O algoritmo evolucionário para descoberta de subgrupos com, atualmente, a melhor performance em bases de alta dimensionalidade, SSDP, possui uma forma peculiar de inicializar sua população, limitando os indivíduos ao menor tamanho possível. Assim como na maioria das técnicas baseadas em população, o resultado de um algoritmo evolucionário é, em geral, dependente do conjunto de soluções inicial, que é tipicamente gerado de forma aleatória. Escolher uma técnica de inicialização sob outra tem grande impacto na solução final apresentada, e este já foi o tópico de trabalhos publicados na área de computação evolucionária. Apesar disso, faltam trabalhos que estudem este tópico no caso específico de descoberta de subgrupos, especialmente quando são consideradas bases de alta dimensionalidade. O objetivo final desta pesquisa é avaliar o impacto da geração da população inicial no resultado final de um algoritmo evolucionário no contexto de uma tarefa de descoberta de subgrupos em dados de alta dimensionalidade. Especificamente, são apresentados novos métodos de inicialização, projetados para as características específicas de tarefas de descoberta de subgrupos, que podem ser utilizadas em praticamente qualquer algoritmo evolucionário. Os experimentos conduzidos mostram que mudar o método de inicialização é o suficiente para aumentar a performance de algoritmos evolucionários o estado da arte em bases de dados de alta dimensionalidade.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoVIMIEIRO, Renatohttp://lattes.cnpq.br/8574157197594723http://lattes.cnpq.br/5736183954752317TORREÃO, Vítor de Albuquerque2019-10-11T19:49:06Z2019-10-11T19:49:06Z2019-03-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/34516engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T14:12:58Zoai:repositorio.ufpe.br:123456789/34516Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:12:58Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
title The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
spellingShingle The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
TORREÃO, Vítor de Albuquerque
Inteligência artificial
Aprendizagem de máquina
Mineração de dados
title_short The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
title_full The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
title_fullStr The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
title_full_unstemmed The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
title_sort The population initialization affects the performance of subgroup discovery evolutionary algorithms in high dimensional datasets
author TORREÃO, Vítor de Albuquerque
author_facet TORREÃO, Vítor de Albuquerque
author_role author
dc.contributor.none.fl_str_mv VIMIEIRO, Renato
http://lattes.cnpq.br/8574157197594723
http://lattes.cnpq.br/5736183954752317
dc.contributor.author.fl_str_mv TORREÃO, Vítor de Albuquerque
dc.subject.por.fl_str_mv Inteligência artificial
Aprendizagem de máquina
Mineração de dados
topic Inteligência artificial
Aprendizagem de máquina
Mineração de dados
description Knowledge Discovery in Databases (KDD) is a broad area in Artificial Intelligence concerned with the extraction of useful information and insights from a given dataset. Among the distinct extraction methodologies, an important subclass of KDD tasks, called Subgroup Discovery (SD), undertakes the discovery of interesting subsets in the data. Many Evolutionary Algorithms (EAs) have been proposed to solve the Subgroup Discovery task with considerable success in low dimensional datasets. Some of these, however, have been shown to perform poorly in high dimensional problems. The currently best performing Evolutionary Algorithm for Subgroup Discovery in high dimensional datasets, SSDP, has a peculiar way of initializing its populations, limiting the individuals to the smallest possible size. As with most population-based techniques, the outcome of an Evolutionary Algorithm is usually dependent on the initial set of solutions, which are typically generated at random. The impact of choosing one initialization technique over another in the final presented solution has been the topic of many published works in the broad area of evolutionary computation. Despite this, there is still a lack of studies which approach this topic in the specific scenario of Subgroup Discovery tasks, especially when considering high dimensional datasets. The ultimate goal of this research project is to evaluate the impact of initial population generation in the end result of the overall Evolutionary Algorithm used to solve a Subgroup Discovery task in high dimensional data. Specifically, we provide new initialization methods, designed for the specific characteristics of Subgroup Discovery tasks, which can be used in virtually any EA. Our conducted experiments show that, by just changing the initialization method, state of the art Evolutionary Algorithms have their performance increased in high dimensional datasets.
publishDate 2019
dc.date.none.fl_str_mv 2019-10-11T19:49:06Z
2019-10-11T19:49:06Z
2019-03-15
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/34516
url https://repositorio.ufpe.br/handle/123456789/34516
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042045976608768