A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: SALES FILHO, Romero Luiz Mendonça
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/17632
Resumo: In recent years, a family of probability distributions based on Nonextensive Statistical Mechanics, known as q-distributions, has experienced a surge in terms of applications to several fields of science and engineering. In this work the _-Exponential distribution will be studied in detail. One of the features of this distribution is the capability of modeling data that have a power law behavior, since it has a heavy-tailed probability density function (PDF) for particular values of its parameters. This feature allows us to consider this distribution as a candidate to model data sets with extremely large values (e.g. cycles to failure). Once the analytical expressions for the maximum likelihood estimates (MLE) of _-Exponential are very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the _- Exponential using two different optimization methods: particle swarm optimization (PSO) and Nelder-Mead (NM), which are also coupled with parametric and non-parametric bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic intervals are also derived. Besides, we will make inference about a useful performance metric in system reliability, the called index __(_, where the stress _ and strength are independent q-Exponential random variables with different parameters. In fact, when dealing with practical problems of stress-strength reliability, one can work with fatigue life data and make use of the well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large values and the capability of the q- Exponential distribution to model data with extremely large values makes this distribution a good candidate to adjust stress-strength models. In terms of system reliability, the index _ is considered a topic of great interest, so we will develop the maximum likelihood estimator (MLE) for the index _ and show that this estimator is obtained by a function that depends on the parameters of the distributions for and _. The behavior of the MLE for the index _ is assessed by means of simulated experiments. Moreover, confidence intervals are developed based on parametric and non-parametric bootstrap. As an example of application, we consider two experimental data sets taken from literature: the first is related to the analysis of high cycle fatigue properties of ductile cast iron for wind turbine components, and the second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel.
id UFPE_32e85d42bb2d8fab96e9df056fc04e8d
oai_identifier_str oai:repositorio.ufpe.br:123456789/17632
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme valuesQ-ExponencialConfiabilidade Força-EstresseEstimador de Máxima VerossimilhaçaNelder-MeadParticle Swarm OptimizationQ-ExponencialConfiabilidade Força-EstresseEstimador de Máxima VerossimilhaçaNelder-MeadParticle Swarm OptimizationIn recent years, a family of probability distributions based on Nonextensive Statistical Mechanics, known as q-distributions, has experienced a surge in terms of applications to several fields of science and engineering. In this work the _-Exponential distribution will be studied in detail. One of the features of this distribution is the capability of modeling data that have a power law behavior, since it has a heavy-tailed probability density function (PDF) for particular values of its parameters. This feature allows us to consider this distribution as a candidate to model data sets with extremely large values (e.g. cycles to failure). Once the analytical expressions for the maximum likelihood estimates (MLE) of _-Exponential are very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the _- Exponential using two different optimization methods: particle swarm optimization (PSO) and Nelder-Mead (NM), which are also coupled with parametric and non-parametric bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic intervals are also derived. Besides, we will make inference about a useful performance metric in system reliability, the called index __(_, where the stress _ and strength are independent q-Exponential random variables with different parameters. In fact, when dealing with practical problems of stress-strength reliability, one can work with fatigue life data and make use of the well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large values and the capability of the q- Exponential distribution to model data with extremely large values makes this distribution a good candidate to adjust stress-strength models. In terms of system reliability, the index _ is considered a topic of great interest, so we will develop the maximum likelihood estimator (MLE) for the index _ and show that this estimator is obtained by a function that depends on the parameters of the distributions for and _. The behavior of the MLE for the index _ is assessed by means of simulated experiments. Moreover, confidence intervals are developed based on parametric and non-parametric bootstrap. As an example of application, we consider two experimental data sets taken from literature: the first is related to the analysis of high cycle fatigue properties of ductile cast iron for wind turbine components, and the second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel.CAPEsNos últimos anos, tem sido notado em diversas áreas da ciência e engenharia, um aumento significativo na aplicabilidade da família q de distribuições de probabilidade que se baseia em Mecânica Estatística Não Extensiva. Uma das características da distribuição q-Exponencial é a capacidade de modelar dados que apresentam comportamento de lei de potência, uma vez que tal distribuição possui uma função densidade de probabilidade (FDP) que apresenta cauda pesada para determinados valores de parâmetros. Esta característica permite-nos considerar tal distribuição como candidata para modelar conjuntos de dados que apresentam valores extremamente grandes (Ex.: ciclos até a falha). Uma vez que expressões analíticas para os estimadores de máxima verossimilhança dos parâmetros não são facilmente encontradas, neste trabalho, iremos obter as estimativas de máxima verossimilhança dos parâmetros através de dois métodos de otimização: particle swarm optimization (PSO) e Nelder-Mead (NM), que além das estimativas pontuais, irão nos fornecer juntamente com abordagens bootstrap, intervalos de confiança para os parâmetros da distribuição; intervalos assintóticos também serão derivados. Além disso, faremos inferência sobre um importante índice de confiabilidade, o chamado Índice __(_, onde Y (estresse) e X (força) são variáveis aleatórias independentes. De fato, quando tratamos de problemas práticos de força-estresse, podemos trabalhar com dados de fadiga e fazer uso da bem conhecida relação entre estresse e ciclos até a falha. Para alguns materiais, esse tipo de variável pode apresentar dados com valores muito grandes e a capacidade da q-Exponencial em modelar esse tipo de dado torna essa uma distribuição a ser considerada para ajustar modelos de força-estresse. Em termos de confiabilidade de sistemas, o índice R é considerado um tópico de bastante interesse, assim iremos desenvolver os estimadores de máxima verossimilhança para esse índice e mostrar que esse estimador é obtido através de uma função que depende dos parâmetros da distribuição de X e Y. O comportamento do estimador é investigado através de experimentos simulados. Intervalos de confiança são desenvolvidos através de bootstrap paramétrico e nãoparamétrico. Duas aplicações envolvendo dados de ciclos até a falha e retiradas da literatura são consideradas: a primeira para ferro fundido e a segunda para aço de alta resistência.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoDROGUETT, Enrique Lópezhttp://lattes.cnpq.br/4252707165390630http://lattes.cnpq.br/7731672359030872SALES FILHO, Romero Luiz Mendonça2016-08-05T14:42:09Z2016-08-05T14:42:09Z2016-02-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/17632engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:50:01Zoai:repositorio.ufpe.br:123456789/17632Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:50:01Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
title A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
spellingShingle A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
SALES FILHO, Romero Luiz Mendonça
Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
title_short A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
title_full A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
title_fullStr A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
title_full_unstemmed A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
title_sort A novel q-exponential based stress-strength reliability model and applications to fatigue life with extreme values
author SALES FILHO, Romero Luiz Mendonça
author_facet SALES FILHO, Romero Luiz Mendonça
author_role author
dc.contributor.none.fl_str_mv DROGUETT, Enrique López
http://lattes.cnpq.br/4252707165390630
http://lattes.cnpq.br/7731672359030872
dc.contributor.author.fl_str_mv SALES FILHO, Romero Luiz Mendonça
dc.subject.por.fl_str_mv Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
topic Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
Q-Exponencial
Confiabilidade Força-Estresse
Estimador de Máxima Verossimilhaça
Nelder-Mead
Particle Swarm Optimization
description In recent years, a family of probability distributions based on Nonextensive Statistical Mechanics, known as q-distributions, has experienced a surge in terms of applications to several fields of science and engineering. In this work the _-Exponential distribution will be studied in detail. One of the features of this distribution is the capability of modeling data that have a power law behavior, since it has a heavy-tailed probability density function (PDF) for particular values of its parameters. This feature allows us to consider this distribution as a candidate to model data sets with extremely large values (e.g. cycles to failure). Once the analytical expressions for the maximum likelihood estimates (MLE) of _-Exponential are very difficult to be obtained, in this work, we will obtain the MLE for the parameters of the _- Exponential using two different optimization methods: particle swarm optimization (PSO) and Nelder-Mead (NM), which are also coupled with parametric and non-parametric bootstrap methods in order to obtain confidence intervals for these parameters; asymptotic intervals are also derived. Besides, we will make inference about a useful performance metric in system reliability, the called index __(_, where the stress _ and strength are independent q-Exponential random variables with different parameters. In fact, when dealing with practical problems of stress-strength reliability, one can work with fatigue life data and make use of the well-known relation between stress and cycles until failure. For some materials, this kind of data can involve extremely large values and the capability of the q- Exponential distribution to model data with extremely large values makes this distribution a good candidate to adjust stress-strength models. In terms of system reliability, the index _ is considered a topic of great interest, so we will develop the maximum likelihood estimator (MLE) for the index _ and show that this estimator is obtained by a function that depends on the parameters of the distributions for and _. The behavior of the MLE for the index _ is assessed by means of simulated experiments. Moreover, confidence intervals are developed based on parametric and non-parametric bootstrap. As an example of application, we consider two experimental data sets taken from literature: the first is related to the analysis of high cycle fatigue properties of ductile cast iron for wind turbine components, and the second one evaluates the specimen size effects on gigacycle fatigue properties of high-strength steel.
publishDate 2016
dc.date.none.fl_str_mv 2016-08-05T14:42:09Z
2016-08-05T14:42:09Z
2016-02-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17632
url https://repositorio.ufpe.br/handle/123456789/17632
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042115433234432