Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer
Ano de defesa: | 2009 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Dissertação |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Não Informado pela instituição
|
Departamento: |
Não Informado pela instituição
|
País: |
Não Informado pela instituição
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/1812 |
Resumo: | Diferentes algoritmos têm sido usados para agrupar dados de expressão gênica, porém não há um único algoritmo que possa ser considerado o melhor independentemente dos dados a serem analisados. Neste trabalho, aplicamos técnicas de Meta-aprendizado para relacionar características de conjuntos de dados de expressão gênica ao desempenho de algoritmos de agrupamento. No nosso contexto, cada meta-exemplo representa características descritivas de uma base de dados de expressão gênica e um rótulo indicando o algoritmo de agrupamento que obteve os melhores resultados quando aplicado aos dados. Um conjunto destes metaexemplos é fornecido como entrada para um algoritmo de aprendizado (o meta-aprendiz), que, por sua vez, é responsável por adquirir conhecimento relativo às características descritivas e os melhores algoritmos. Neste trabalho, realizamos experimentos em um estudo de caso no qual um meta-aprendiz foi utilizado para discriminar entre três algoritmos de agrupamento candidatos, bem como para extrair conhecimento interpretável a partir dos experimentos. O conhecimento extraído pelo meta-aprendiz foi útil para o entendimento da aplicabilidade de cada algoritmo de agrupamento para problemas específicos |
id |
UFPE_41941577ca7cd1c0b0cbf94a48859bf2 |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/1812 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
NASCIMENTO, André Câmara Alves doPRUDÊNCIO, Ricardo Bastos Cavalcante2014-06-12T15:52:33Z2014-06-12T15:52:33Z2009-01-31Câmara Alves do Nascimento, André; Bastos Cavalcante Prudêncio, Ricardo. Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009.https://repositorio.ufpe.br/handle/123456789/1812Diferentes algoritmos têm sido usados para agrupar dados de expressão gênica, porém não há um único algoritmo que possa ser considerado o melhor independentemente dos dados a serem analisados. Neste trabalho, aplicamos técnicas de Meta-aprendizado para relacionar características de conjuntos de dados de expressão gênica ao desempenho de algoritmos de agrupamento. No nosso contexto, cada meta-exemplo representa características descritivas de uma base de dados de expressão gênica e um rótulo indicando o algoritmo de agrupamento que obteve os melhores resultados quando aplicado aos dados. Um conjunto destes metaexemplos é fornecido como entrada para um algoritmo de aprendizado (o meta-aprendiz), que, por sua vez, é responsável por adquirir conhecimento relativo às características descritivas e os melhores algoritmos. Neste trabalho, realizamos experimentos em um estudo de caso no qual um meta-aprendiz foi utilizado para discriminar entre três algoritmos de agrupamento candidatos, bem como para extrair conhecimento interpretável a partir dos experimentos. O conhecimento extraído pelo meta-aprendiz foi útil para o entendimento da aplicabilidade de cada algoritmo de agrupamento para problemas específicosporUniversidade Federal de PernambucoAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessMeta-aprendizadoTécnicas de AgrupamentoExpressão GênicaMineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncerinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPELICENSElicense.txttext/plain1748https://repositorio.ufpe.br/bitstream/123456789/1812/1/license.txt8a4605be74aa9ea9d79846c1fba20a33MD51ORIGINALacan.pdfacan.pdfapplication/pdf1275834https://repositorio.ufpe.br/bitstream/123456789/1812/2/acan.pdfa304ee354d18df6e72858e6bf1b4a9aeMD52TEXTacan.pdf.txtacan.pdf.txtExtracted texttext/plain201371https://repositorio.ufpe.br/bitstream/123456789/1812/3/acan.pdf.txt4b2ba4efd332cc7bd30e2324a67e72d2MD53THUMBNAILacan.pdf.jpgacan.pdf.jpgGenerated Thumbnailimage/jpeg1248https://repositorio.ufpe.br/bitstream/123456789/1812/4/acan.pdf.jpgc26b2c4c9b4e2413e6bdb268ebe15fd5MD54123456789/18122019-10-25 02:20:53.62oai:repositorio.ufpe.br:123456789/1812Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:20:53Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
title |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
spellingShingle |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer NASCIMENTO, André Câmara Alves do Meta-aprendizado Técnicas de Agrupamento Expressão Gênica |
title_short |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
title_full |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
title_fullStr |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
title_full_unstemmed |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
title_sort |
Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer |
author |
NASCIMENTO, André Câmara Alves do |
author_facet |
NASCIMENTO, André Câmara Alves do |
author_role |
author |
dc.contributor.author.fl_str_mv |
NASCIMENTO, André Câmara Alves do |
dc.contributor.advisor1.fl_str_mv |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
contributor_str_mv |
PRUDÊNCIO, Ricardo Bastos Cavalcante |
dc.subject.por.fl_str_mv |
Meta-aprendizado Técnicas de Agrupamento Expressão Gênica |
topic |
Meta-aprendizado Técnicas de Agrupamento Expressão Gênica |
description |
Diferentes algoritmos têm sido usados para agrupar dados de expressão gênica, porém não há um único algoritmo que possa ser considerado o melhor independentemente dos dados a serem analisados. Neste trabalho, aplicamos técnicas de Meta-aprendizado para relacionar características de conjuntos de dados de expressão gênica ao desempenho de algoritmos de agrupamento. No nosso contexto, cada meta-exemplo representa características descritivas de uma base de dados de expressão gênica e um rótulo indicando o algoritmo de agrupamento que obteve os melhores resultados quando aplicado aos dados. Um conjunto destes metaexemplos é fornecido como entrada para um algoritmo de aprendizado (o meta-aprendiz), que, por sua vez, é responsável por adquirir conhecimento relativo às características descritivas e os melhores algoritmos. Neste trabalho, realizamos experimentos em um estudo de caso no qual um meta-aprendiz foi utilizado para discriminar entre três algoritmos de agrupamento candidatos, bem como para extrair conhecimento interpretável a partir dos experimentos. O conhecimento extraído pelo meta-aprendiz foi útil para o entendimento da aplicabilidade de cada algoritmo de agrupamento para problemas específicos |
publishDate |
2009 |
dc.date.issued.fl_str_mv |
2009-01-31 |
dc.date.accessioned.fl_str_mv |
2014-06-12T15:52:33Z |
dc.date.available.fl_str_mv |
2014-06-12T15:52:33Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
format |
masterThesis |
status_str |
publishedVersion |
dc.identifier.citation.fl_str_mv |
Câmara Alves do Nascimento, André; Bastos Cavalcante Prudêncio, Ricardo. Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/1812 |
identifier_str_mv |
Câmara Alves do Nascimento, André; Bastos Cavalcante Prudêncio, Ricardo. Mineração de regras para seleção de técnicas de agrupamento para dados de expressão gênica de câncer. 2009. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2009. |
url |
https://repositorio.ufpe.br/handle/123456789/1812 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/1812/1/license.txt https://repositorio.ufpe.br/bitstream/123456789/1812/2/acan.pdf https://repositorio.ufpe.br/bitstream/123456789/1812/3/acan.pdf.txt https://repositorio.ufpe.br/bitstream/123456789/1812/4/acan.pdf.jpg |
bitstream.checksum.fl_str_mv |
8a4605be74aa9ea9d79846c1fba20a33 a304ee354d18df6e72858e6bf1b4a9ae 4b2ba4efd332cc7bd30e2324a67e72d2 c26b2c4c9b4e2413e6bdb268ebe15fd5 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1802311191987486720 |