Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: LACERDA, Marcelo Gomes Pereira de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/40461
Resumo: Despite the success of evolutionary and swarm-based algorithms in many different application areas, such algorithms are very sensitive to the values of their parameters. According to the No Free Lunch Theorem, there is no parameter setting for a given algorithm that works best for every possible problem. Thus, finding a quasi-optimal parameter setting that maximizes the performance of a given metaheuristic in a specific problem is necessary. As manual parameter adjustment for evolutionary and swarm-based algorithms can be very hard and time demanding, automating this task has been one of the greatest and most important challenges in the field. Out-of-the-box parameter control methods are techniques that dynamically adjust the parameters of a metaheuristics during its execution and can be applied to any parameter, metaheuristic and optimization problem. Very few studies about out-of-the-box parameter control methods can be found in the literature, and most of them apply reinforcement learning algorithms to train effective parameter control policies. Even though these studies have presented very interesting and promising results, the problem of parameter control for metaheuristics is far from being solved. A few important gaps were identified in the literature of this field, namely: (1) training parameter control policies with reinforcement learning can be very computational-demanding; (2) reinforcement learning algorithms usually require the adjustment of many hyperparameters, what makes difficult its successful use. Moreover, the search for an optimal policy can be very unstable; (3) and, very limited benchmarks have been used to assess the generality of the out-of-the-box methods proposed so far in the literature. To address such gaps, the primary objective of this work is to propose an out-of-the-box policy training method for parameter control of mono-objective evolutionary and swarm-based algorithms with distributed reinforcement learning.The proposed method had its generality tested on a comprehensive experimental benchmark with 133 scenarios with 5 different metaheuristics, solving several numerical (continuous), binary, and combinatorial optimization problems. The scalability of the proposed architecture was also dully assessed. Moreover, extensive analyses of the hyperparameters of the proposed method were performed. The experimental results showed that the three aforementioned gaps were successfully addressed by the proposed method, besides a few other secondary advancements in the field, all commented in this thesis.
id UFPE_4fd2f55016c49982eea6a0e0c814d699
oai_identifier_str oai:repositorio.ufpe.br:123456789/40461
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learningInteligência ComputacionalInteligência de enxamesComputação evolucionáriaAprendizagem por reforçoDespite the success of evolutionary and swarm-based algorithms in many different application areas, such algorithms are very sensitive to the values of their parameters. According to the No Free Lunch Theorem, there is no parameter setting for a given algorithm that works best for every possible problem. Thus, finding a quasi-optimal parameter setting that maximizes the performance of a given metaheuristic in a specific problem is necessary. As manual parameter adjustment for evolutionary and swarm-based algorithms can be very hard and time demanding, automating this task has been one of the greatest and most important challenges in the field. Out-of-the-box parameter control methods are techniques that dynamically adjust the parameters of a metaheuristics during its execution and can be applied to any parameter, metaheuristic and optimization problem. Very few studies about out-of-the-box parameter control methods can be found in the literature, and most of them apply reinforcement learning algorithms to train effective parameter control policies. Even though these studies have presented very interesting and promising results, the problem of parameter control for metaheuristics is far from being solved. A few important gaps were identified in the literature of this field, namely: (1) training parameter control policies with reinforcement learning can be very computational-demanding; (2) reinforcement learning algorithms usually require the adjustment of many hyperparameters, what makes difficult its successful use. Moreover, the search for an optimal policy can be very unstable; (3) and, very limited benchmarks have been used to assess the generality of the out-of-the-box methods proposed so far in the literature. To address such gaps, the primary objective of this work is to propose an out-of-the-box policy training method for parameter control of mono-objective evolutionary and swarm-based algorithms with distributed reinforcement learning.The proposed method had its generality tested on a comprehensive experimental benchmark with 133 scenarios with 5 different metaheuristics, solving several numerical (continuous), binary, and combinatorial optimization problems. The scalability of the proposed architecture was also dully assessed. Moreover, extensive analyses of the hyperparameters of the proposed method were performed. The experimental results showed that the three aforementioned gaps were successfully addressed by the proposed method, besides a few other secondary advancements in the field, all commented in this thesis.CNPqApesar do sucesso de algoritmos evolutivos e baseados em enxames em diferentes áreas de aplicação, estes algoritmos são muito sensíveis aos seus parâmetros. De acordo com o teorema "não existe almoço grátis", não existe configuração para um determinado algoritmo que funcione melhor para todos os problemas possíveis. Assim, faz-se necessário encontrar uma configuração de parâmetro que maximize o desempenho de uma dada metaheurística em um problema específico. No entanto, o ajuste manual de parâmetros para algoritmos evolutivos e baseados em enxames pode ser muito difícil e exigir muito tempo. Portanto, automatizar essa tarefa tem sido um dos maiores e mais importantes desafios da área. Métodos out-of-the-box de controle de parâmetros são técnicas que ajustam dinamicamente os parâmetros de uma metaheurística durante sua execução e podem ser aplicados a qualquer parâmetro, metaheurística e problema de otimização. Poucos estudos sobre métodos de controle de parâmetros out-of-the-box podem ser encontrados na literatura, e a maioria deles aplica algoritmos de aprendizagem por reforço para treinar políticas de controle de parâmetros eficazes. Embora esses estudos tenham apresentado resultados muito interessantes e promissores, o problema do controle de parâmetros para metaheurísticas está longe de ser resolvido. Algumas lacunas importantes foram identificadas na literatura da área, a saber: (1) Métodos de treinamento de políticas de controle de parâmetros baseados em aprendizagem por reforço podem demandar muito esforço computacional e tempo de execução. (2) Algoritmos de aprendizagem por reforço geralmente requerem o ajuste de vários hiperparâmetros, o que dificulta seu uso com sucesso. Além disso, a busca por uma política ótima pode ser muito instável. (3) Benchmark experimentais muito limitados foram usados para avaliar a generalidade dos métodos out-of-the-box, o que limita a avaliação da generalidade dos métodos propostos. A fim de preencher tais lacunas, o objetivo principal deste trabalho é propor um método de treinamento de política out-of-the-box para controle de parâmetros de algoritmos evolucionários e baseados em enxames mono-objetivos utilizando aprendizagem por reforço distribuída. A fim de avaliar sua generalidade, o método proposto foi testado em um benchmark experimental abrangente com 133 cenários com 5 metaheurísticas diferentes, resolvendo vários problemas de otimização contínua, binários e de otimização combinatória. A escalabilidade da arquitetura proposta também foi avaliada. Além disso, foi realizada uma análise dos hiperparâmetros do método proposto. Os resultados experimentais mostraram que as três lacunas acima mencionadas foram satisfatoriamente preenchidas pelo método proposto, além de alguns outros avanços secundários na área.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoLUDERMIR, Teresa BernardaLIMA NETO, Fernando Buarque dehttp://lattes.cnpq.br/9233884195509895http://lattes.cnpq.br/6321179168854922http://lattes.cnpq.br/5175924818753829LACERDA, Marcelo Gomes Pereira de2021-07-08T19:44:12Z2021-07-08T19:44:12Z2021-03-19info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfLACERDA, Marcelo Gomes Pereira de. Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning. 2021. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/40461engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2021-07-09T05:20:41Zoai:repositorio.ufpe.br:123456789/40461Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-07-09T05:20:41Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
title Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
spellingShingle Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
LACERDA, Marcelo Gomes Pereira de
Inteligência Computacional
Inteligência de enxames
Computação evolucionária
Aprendizagem por reforço
title_short Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
title_full Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
title_fullStr Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
title_full_unstemmed Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
title_sort Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning
author LACERDA, Marcelo Gomes Pereira de
author_facet LACERDA, Marcelo Gomes Pereira de
author_role author
dc.contributor.none.fl_str_mv LUDERMIR, Teresa Bernarda
LIMA NETO, Fernando Buarque de
http://lattes.cnpq.br/9233884195509895
http://lattes.cnpq.br/6321179168854922
http://lattes.cnpq.br/5175924818753829
dc.contributor.author.fl_str_mv LACERDA, Marcelo Gomes Pereira de
dc.subject.por.fl_str_mv Inteligência Computacional
Inteligência de enxames
Computação evolucionária
Aprendizagem por reforço
topic Inteligência Computacional
Inteligência de enxames
Computação evolucionária
Aprendizagem por reforço
description Despite the success of evolutionary and swarm-based algorithms in many different application areas, such algorithms are very sensitive to the values of their parameters. According to the No Free Lunch Theorem, there is no parameter setting for a given algorithm that works best for every possible problem. Thus, finding a quasi-optimal parameter setting that maximizes the performance of a given metaheuristic in a specific problem is necessary. As manual parameter adjustment for evolutionary and swarm-based algorithms can be very hard and time demanding, automating this task has been one of the greatest and most important challenges in the field. Out-of-the-box parameter control methods are techniques that dynamically adjust the parameters of a metaheuristics during its execution and can be applied to any parameter, metaheuristic and optimization problem. Very few studies about out-of-the-box parameter control methods can be found in the literature, and most of them apply reinforcement learning algorithms to train effective parameter control policies. Even though these studies have presented very interesting and promising results, the problem of parameter control for metaheuristics is far from being solved. A few important gaps were identified in the literature of this field, namely: (1) training parameter control policies with reinforcement learning can be very computational-demanding; (2) reinforcement learning algorithms usually require the adjustment of many hyperparameters, what makes difficult its successful use. Moreover, the search for an optimal policy can be very unstable; (3) and, very limited benchmarks have been used to assess the generality of the out-of-the-box methods proposed so far in the literature. To address such gaps, the primary objective of this work is to propose an out-of-the-box policy training method for parameter control of mono-objective evolutionary and swarm-based algorithms with distributed reinforcement learning.The proposed method had its generality tested on a comprehensive experimental benchmark with 133 scenarios with 5 different metaheuristics, solving several numerical (continuous), binary, and combinatorial optimization problems. The scalability of the proposed architecture was also dully assessed. Moreover, extensive analyses of the hyperparameters of the proposed method were performed. The experimental results showed that the three aforementioned gaps were successfully addressed by the proposed method, besides a few other secondary advancements in the field, all commented in this thesis.
publishDate 2021
dc.date.none.fl_str_mv 2021-07-08T19:44:12Z
2021-07-08T19:44:12Z
2021-03-19
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LACERDA, Marcelo Gomes Pereira de. Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning. 2021. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.
https://repositorio.ufpe.br/handle/123456789/40461
identifier_str_mv LACERDA, Marcelo Gomes Pereira de. Out-of-the-box parameter control for evolutionary and swarm-based algorithms with distributed reinforcement learning. 2021. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/40461
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042005392523264