Exploring multi-agent deep reinforcement learning in IEEE very small size soccer

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: MARTINS, Felipe Bezerra
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/54823
Resumo: Robot soccer is regarded as a prime example of a dynamic and cooperative multi-agent environment, as it can demonstrate a variety of complexities. Reinforcement learning is a promising technique for optimizing decision-making in these complex systems, as it has recently achieved great success due to advances in deep neural networks, as shown in problems such as autonomous driving, games, and robotics. In multi-agent systems reinforcement learning re- search is tackling challenges such as cooperation, partial observability, decentralized execution, communication, and complex dynamics. On difficult tasks, modeling the complete problem in the learning environment can be too difficult for the algorithms to solve. We can simplify the environment to enable learning, however, policies learned in simplified environments are usually not optimal in the full environment. This study explores whether deep multi-agent re- inforcement learning outperforms single-agent counterparts in an IEEE Very Small Size Soccer setting, a task that presents a challenging problem of cooperation and competition with two teams facing each other, each having three robots. We investigate diverse learning paradigms efficacies in achieving the core objective of goal scoring, assessing cooperation by compar- ing the results of multi-agent and single-agent paradigms. Results indicate that simplifications made to the learning environment to facilitate learning may diminish cooperation’s importance and also introduce biases, driving the learning process towards conflicting policies misaligned with the original challenge.
id UFPE_b675a4ea6b1a1cb60a873b1d5bc3f9b2
oai_identifier_str oai:repositorio.ufpe.br:123456789/54823
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Exploring multi-agent deep reinforcement learning in IEEE very small size soccerInteligência computacionalAprendizado por reforçoRobóticaSistemas multiagentesRobot soccer is regarded as a prime example of a dynamic and cooperative multi-agent environment, as it can demonstrate a variety of complexities. Reinforcement learning is a promising technique for optimizing decision-making in these complex systems, as it has recently achieved great success due to advances in deep neural networks, as shown in problems such as autonomous driving, games, and robotics. In multi-agent systems reinforcement learning re- search is tackling challenges such as cooperation, partial observability, decentralized execution, communication, and complex dynamics. On difficult tasks, modeling the complete problem in the learning environment can be too difficult for the algorithms to solve. We can simplify the environment to enable learning, however, policies learned in simplified environments are usually not optimal in the full environment. This study explores whether deep multi-agent re- inforcement learning outperforms single-agent counterparts in an IEEE Very Small Size Soccer setting, a task that presents a challenging problem of cooperation and competition with two teams facing each other, each having three robots. We investigate diverse learning paradigms efficacies in achieving the core objective of goal scoring, assessing cooperation by compar- ing the results of multi-agent and single-agent paradigms. Results indicate that simplifications made to the learning environment to facilitate learning may diminish cooperation’s importance and also introduce biases, driving the learning process towards conflicting policies misaligned with the original challenge.CAPESO futebol de robôs é considerado um excelente exemplo de ambiente multiagente dinâ- mico e cooperativo, podendo demonstrar uma variedade de complexidades. A aprendizagem por reforço é uma técnica promissora para otimizar a tomada de decisões nestes sistemas complexos, obtendo recentemente grande sucesso devido aos avanços nas redes neurais pro- fundas, como mostrado em problemas de direção autônoma, jogos e robótica. Em sistemas multiagentes, a pesquisa de aprendizagem por reforço está enfrentando desafios de coopera- ção, observabilidade parcial, execução descentralizada, comunicação e dinâmicas complexas. Em tarefas difíceis, modelar o problema completo no ambiente de aprendizagem pode ser muito desafiador para os algoritmos resolverem, podemos simplificar o ambiente para permitir a aprendizagem, contudo, as políticas aprendidas em ambientes simplificados geralmente não são ideais no ambiente completo. Este estudo explora se a aprendizagem profunda por reforço multiagente supera as contrapartes de agente único em um ambiente de futebol de robôs da categoria IEEE Very Small Size Soccer, uma tarefa que apresenta um problema desafiador de cooperação e competição com duas equipes frente a frente, cada uma com três robôs. In- vestigamos a eficácia de diversos paradigmas de aprendizagem em alcançar o objetivo central de realizar gols, avaliando a cooperação, comparando os resultados de paradigmas multiagen- tes e de agente único. Os resultados indicam que as simplificações introduzidas no ambiente para facilitar a aprendizagem podem diminuir a importância da cooperação e introduzir vieses, conduzindo o processo ao aprendizado de políticas conflitantes e desalinhadas com o desafio original.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoBASSANI, Hansenclever de Françahttp://lattes.cnpq.br/6129506437474224http://lattes.cnpq.br/1931667959910637MARTINS, Felipe Bezerra2024-01-26T18:28:09Z2024-01-26T18:28:09Z2023-09-27info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMARTINS, Felipe Bezerra. Exploring multi-agent deep reinforcement learning in IEEE very small size soccer. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/54823engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2024-01-27T05:22:23Zoai:repositorio.ufpe.br:123456789/54823Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212024-01-27T05:22:23Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
title Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
spellingShingle Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
MARTINS, Felipe Bezerra
Inteligência computacional
Aprendizado por reforço
Robótica
Sistemas multiagentes
title_short Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
title_full Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
title_fullStr Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
title_full_unstemmed Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
title_sort Exploring multi-agent deep reinforcement learning in IEEE very small size soccer
author MARTINS, Felipe Bezerra
author_facet MARTINS, Felipe Bezerra
author_role author
dc.contributor.none.fl_str_mv BASSANI, Hansenclever de França
http://lattes.cnpq.br/6129506437474224
http://lattes.cnpq.br/1931667959910637
dc.contributor.author.fl_str_mv MARTINS, Felipe Bezerra
dc.subject.por.fl_str_mv Inteligência computacional
Aprendizado por reforço
Robótica
Sistemas multiagentes
topic Inteligência computacional
Aprendizado por reforço
Robótica
Sistemas multiagentes
description Robot soccer is regarded as a prime example of a dynamic and cooperative multi-agent environment, as it can demonstrate a variety of complexities. Reinforcement learning is a promising technique for optimizing decision-making in these complex systems, as it has recently achieved great success due to advances in deep neural networks, as shown in problems such as autonomous driving, games, and robotics. In multi-agent systems reinforcement learning re- search is tackling challenges such as cooperation, partial observability, decentralized execution, communication, and complex dynamics. On difficult tasks, modeling the complete problem in the learning environment can be too difficult for the algorithms to solve. We can simplify the environment to enable learning, however, policies learned in simplified environments are usually not optimal in the full environment. This study explores whether deep multi-agent re- inforcement learning outperforms single-agent counterparts in an IEEE Very Small Size Soccer setting, a task that presents a challenging problem of cooperation and competition with two teams facing each other, each having three robots. We investigate diverse learning paradigms efficacies in achieving the core objective of goal scoring, assessing cooperation by compar- ing the results of multi-agent and single-agent paradigms. Results indicate that simplifications made to the learning environment to facilitate learning may diminish cooperation’s importance and also introduce biases, driving the learning process towards conflicting policies misaligned with the original challenge.
publishDate 2023
dc.date.none.fl_str_mv 2023-09-27
2024-01-26T18:28:09Z
2024-01-26T18:28:09Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MARTINS, Felipe Bezerra. Exploring multi-agent deep reinforcement learning in IEEE very small size soccer. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/54823
identifier_str_mv MARTINS, Felipe Bezerra. Exploring multi-agent deep reinforcement learning in IEEE very small size soccer. 2023. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/54823
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042071031283712