DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: BASTOS, Michael Lopes
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/67534
Resumo: Fungal infections, especially those caused by Candida spp., represent a critical challenge in intensive care units, being associated with high mortality rates (40–60%). This scenario is aggravated by the slowness and low sensitivity (∼50%) of the current gold standard for diagnosis, the blood culture. To overcome these limitations, this thesis proposes, develops, and validates a new Framework for the identification of microorganisms based on the analysis of Volatile Organic Compounds (VOCs). This approach establishes a systematic workflow that includes: (i) the development of a protocol for experimentation and data acquisition with Elec tronic Noses (E-noses); (ii) the construction and preparation of databases of Candida VOCs, from both culture isolates and in blood broth; (iii) the application and evaluation of tradi tional and time-series classification models; and (iv) the design of a pioneering explainability (XAI) architecture based on an ensemble of techniques, aimed at ensuring the transparency of predictions. The effectiveness of the Framework was validated in the differentiation of Can dida species in different contexts, including culture and blood broth. The results attest to the robustness of the approach, with the classification models achieving accuracies of 97.46% in the culture-based approach and 98.18% in the blood broth context. In this sense, the main contribution of this thesis is the creation of a computational framework that integrates a novel explainability ensemble architecture, based on the combination of multiple methods, in order to provide consistent and multifaceted interpretations of the model’s decisions. The validation of this approach, through ablation and sensitivity studies, confirms its potential to increase confidence in the results and favor the clinical adoption of the solution. Thus, the Framework is established as a significant methodological contribution to computer science, with a direct and relevant impact on healthcare.
id UFPE_56e38ebc084ac2798bcadc91f9f13b84
oai_identifier_str oai:repositorio.ufpe.br:123456789/67534
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic NosesExplainable Artificial IntelligenceElectronic NoseCandida InfectionsFungal infections, especially those caused by Candida spp., represent a critical challenge in intensive care units, being associated with high mortality rates (40–60%). This scenario is aggravated by the slowness and low sensitivity (∼50%) of the current gold standard for diagnosis, the blood culture. To overcome these limitations, this thesis proposes, develops, and validates a new Framework for the identification of microorganisms based on the analysis of Volatile Organic Compounds (VOCs). This approach establishes a systematic workflow that includes: (i) the development of a protocol for experimentation and data acquisition with Elec tronic Noses (E-noses); (ii) the construction and preparation of databases of Candida VOCs, from both culture isolates and in blood broth; (iii) the application and evaluation of tradi tional and time-series classification models; and (iv) the design of a pioneering explainability (XAI) architecture based on an ensemble of techniques, aimed at ensuring the transparency of predictions. The effectiveness of the Framework was validated in the differentiation of Can dida species in different contexts, including culture and blood broth. The results attest to the robustness of the approach, with the classification models achieving accuracies of 97.46% in the culture-based approach and 98.18% in the blood broth context. In this sense, the main contribution of this thesis is the creation of a computational framework that integrates a novel explainability ensemble architecture, based on the combination of multiple methods, in order to provide consistent and multifaceted interpretations of the model’s decisions. The validation of this approach, through ablation and sensitivity studies, confirms its potential to increase confidence in the results and favor the clinical adoption of the solution. Thus, the Framework is established as a significant methodological contribution to computer science, with a direct and relevant impact on healthcare.CAPESAs infecções fúngicas, especialmente as causadas por Candida spp., representam um desafio crítico em unidades de terapia intensiva, estando associadas a elevadas taxas de mor talidade (40–60%). Esse cenário é agravado pela lentidão e pela baixa sensibilidade (∼50%) do atual padrão-ouro de diagnóstico, a hemocultura. Com o objetivo de superar essas limitações, esta tese propõe, desenvolve e valida um novo Framework para a identificação de microrganis mos a partir da análise de Compostos Orgânicos Voláteis (VOCs). Essa abordagem estabelece um fluxo de trabalho sistemático que contempla: (i) o desenvolvimento de um protocolo para experimentação e aquisição de dados com Narizes Eletrônicos (E-nose); (ii) a construção e preparação de bases de dados de VOCs de Candida, tanto com isolados de cultura quanto em caldo de sangue; (iii) a aplicação e avaliação de modelos de classificação tradicionais e de séries temporais; e (iv) a concepção de uma arquitetura pioneira de explicabilidade (XAI) baseada em um ensemble de técnicas, voltada a assegurar a transparência das predições. A eficácia do Framework foi validada na diferenciação de espécies de Candida em diferentes con textos, incluindo cultura e caldo de sangue. Os resultados atestam a robustez da abordagem, com os modelos de classificação alcançando acurácias de 97,46% na abordagem com cultura e 98,18% no contexto com caldo de sangue. Nesse sentido, a principal contribuição desta tese é a criação de um framework computacional que integra uma arquitetura inédita de ensemble de explicabilidade, baseada na combinação de múltiplos métodos, a fim de fornecer interpretações consistentes e multifacetadas das decisões do modelo. A validação dessa abordagem, por meio de estudos de ablação e sensibilidade, confirma seu potencial para aumentar a confiança nos resultados e favorecer a adoção clínica da solução. Assim, o Framework consolida-se como uma contribuição metodológica significativa para a ciência da computação, com impacto direto e relevante na saúde.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoALMEIDA, Leandro Macielhttp://lattes.cnpq.br/7056290325252453http://lattes.cnpq.br/8513145553846486https://orcid.org/0000-0001-6581-2067https://orcid.org/0000-0001-8025-0517BASTOS, Michael Lopes2026-01-12T14:00:51Z2026-01-12T14:00:51Z2025-11-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfBASTOS, Michael Lopes. DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses. Tese (Doutorado em Ciências da Computação) - Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/67534enghttps://creativecommons.org/licenses/by-nc-nd/4.0/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2026-01-18T19:54:34Zoai:repositorio.ufpe.br:123456789/67534Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212026-01-18T19:54:34Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
title DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
spellingShingle DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
BASTOS, Michael Lopes
Explainable Artificial Intelligence
Electronic Nose
Candida Infections
title_short DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
title_full DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
title_fullStr DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
title_full_unstemmed DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
title_sort DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses
author BASTOS, Michael Lopes
author_facet BASTOS, Michael Lopes
author_role author
dc.contributor.none.fl_str_mv ALMEIDA, Leandro Maciel
http://lattes.cnpq.br/7056290325252453
http://lattes.cnpq.br/8513145553846486
https://orcid.org/0000-0001-6581-2067
https://orcid.org/0000-0001-8025-0517
dc.contributor.author.fl_str_mv BASTOS, Michael Lopes
dc.subject.por.fl_str_mv Explainable Artificial Intelligence
Electronic Nose
Candida Infections
topic Explainable Artificial Intelligence
Electronic Nose
Candida Infections
description Fungal infections, especially those caused by Candida spp., represent a critical challenge in intensive care units, being associated with high mortality rates (40–60%). This scenario is aggravated by the slowness and low sensitivity (∼50%) of the current gold standard for diagnosis, the blood culture. To overcome these limitations, this thesis proposes, develops, and validates a new Framework for the identification of microorganisms based on the analysis of Volatile Organic Compounds (VOCs). This approach establishes a systematic workflow that includes: (i) the development of a protocol for experimentation and data acquisition with Elec tronic Noses (E-noses); (ii) the construction and preparation of databases of Candida VOCs, from both culture isolates and in blood broth; (iii) the application and evaluation of tradi tional and time-series classification models; and (iv) the design of a pioneering explainability (XAI) architecture based on an ensemble of techniques, aimed at ensuring the transparency of predictions. The effectiveness of the Framework was validated in the differentiation of Can dida species in different contexts, including culture and blood broth. The results attest to the robustness of the approach, with the classification models achieving accuracies of 97.46% in the culture-based approach and 98.18% in the blood broth context. In this sense, the main contribution of this thesis is the creation of a computational framework that integrates a novel explainability ensemble architecture, based on the combination of multiple methods, in order to provide consistent and multifaceted interpretations of the model’s decisions. The validation of this approach, through ablation and sensitivity studies, confirms its potential to increase confidence in the results and favor the clinical adoption of the solution. Thus, the Framework is established as a significant methodological contribution to computer science, with a direct and relevant impact on healthcare.
publishDate 2025
dc.date.none.fl_str_mv 2025-11-25
2026-01-12T14:00:51Z
2026-01-12T14:00:51Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BASTOS, Michael Lopes. DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses. Tese (Doutorado em Ciências da Computação) - Universidade Federal de Pernambuco, Recife, 2025.
https://repositorio.ufpe.br/handle/123456789/67534
identifier_str_mv BASTOS, Michael Lopes. DiagNose.AI: A Novel Explainable Artificial Intelligence Framework for the Identification of Candida spp. from Volatile Organic Compounds using Electronic Noses. Tese (Doutorado em Ciências da Computação) - Universidade Federal de Pernambuco, Recife, 2025.
url https://repositorio.ufpe.br/handle/123456789/67534
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv https://creativecommons.org/licenses/by-nc-nd/4.0/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041951532417024