Agrupamento de dados simbólicos usando abordagem Possibilistic

Detalhes bibliográficos
Ano de defesa: 2013
Autor(a) principal: Pimentel, Bruno Almeida
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/11420
Resumo: Este trabalho relata sobre os diferentes métodos de agrupamento presentes na literatura atual e introduz métodos de agrupamento baseado na abordagem possibilística para dados intervalares. Tem como objetivo estender os métodos clássicos de agrupamento possibilístico para dados intervalares simbólicos. Além disso, é proposto uma nova abordagem possibilística em que há um grau de pertinência diferente para cada variável e classe. A abordagem possibilística considera a pertinência como possibilidades dos objetos a classes e a partição resultante dos dados pode ser entendida como uma partição possibilística. O algoritmo conhecido dessa categoria é o Possibilístic C-Means (PCM). No PCM, a otimização da função objetivo em alguns conjuntos de dados pode ajudar a identificar outliers e dados ruidosos. A Análise de Dados Simbólico (ADS) surgiu para lidar com variáveis simbólicas, que podem ser do tipo intervalos, histogramas, e até mesmo funções, a fim de considerar a variabilidade e/ou a incerteza inata aos dados. As técnicas de ADS tornam-se uma poderosa ferramenta quando usadas em métodos de agrupamentos, o que causa um constante crescimento em pesquisas para o aprimoramento destas técnicas usadas nos mais variados algoritmos, tais como em K-Means, Support Vector Machine (SVM) e Kernel. Objetivando avaliar o desempenho dos métodos propostos e os presentes na literatura, um estudo comparativo destes métodos em relação ao agrupamento de objetos simbólicos do tipo intervalo é realizado. Foram planejados experimentos com dados sintéticos, usando o experimento Monte Carlo, e dados reais. O índice corrigido de Rand (CR) e a taxa de erro global de classificação (OERC) são usados para avaliar os métodos.
id UFPE_6779d0d8628df9b12d68d2032505cee1
oai_identifier_str oai:repositorio.ufpe.br:123456789/11420
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Agrupamento de dados simbólicos usando abordagem PossibilisticAnálise de Dados SimbólicosDados IntervalaresMétodo de Agrupamento Possibilistic C-MeansRuidoOutlierEste trabalho relata sobre os diferentes métodos de agrupamento presentes na literatura atual e introduz métodos de agrupamento baseado na abordagem possibilística para dados intervalares. Tem como objetivo estender os métodos clássicos de agrupamento possibilístico para dados intervalares simbólicos. Além disso, é proposto uma nova abordagem possibilística em que há um grau de pertinência diferente para cada variável e classe. A abordagem possibilística considera a pertinência como possibilidades dos objetos a classes e a partição resultante dos dados pode ser entendida como uma partição possibilística. O algoritmo conhecido dessa categoria é o Possibilístic C-Means (PCM). No PCM, a otimização da função objetivo em alguns conjuntos de dados pode ajudar a identificar outliers e dados ruidosos. A Análise de Dados Simbólico (ADS) surgiu para lidar com variáveis simbólicas, que podem ser do tipo intervalos, histogramas, e até mesmo funções, a fim de considerar a variabilidade e/ou a incerteza inata aos dados. As técnicas de ADS tornam-se uma poderosa ferramenta quando usadas em métodos de agrupamentos, o que causa um constante crescimento em pesquisas para o aprimoramento destas técnicas usadas nos mais variados algoritmos, tais como em K-Means, Support Vector Machine (SVM) e Kernel. Objetivando avaliar o desempenho dos métodos propostos e os presentes na literatura, um estudo comparativo destes métodos em relação ao agrupamento de objetos simbólicos do tipo intervalo é realizado. Foram planejados experimentos com dados sintéticos, usando o experimento Monte Carlo, e dados reais. O índice corrigido de Rand (CR) e a taxa de erro global de classificação (OERC) são usados para avaliar os métodos.CNPqUniversidade Federal de PernambucoSouza, Renata Maria C. R. de Pimentel, Bruno Almeida2015-03-09T13:28:57Z2015-03-09T13:28:57Z2013-02-25info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/11420porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:41:43Zoai:repositorio.ufpe.br:123456789/11420Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:41:43Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Agrupamento de dados simbólicos usando abordagem Possibilistic
title Agrupamento de dados simbólicos usando abordagem Possibilistic
spellingShingle Agrupamento de dados simbólicos usando abordagem Possibilistic
Pimentel, Bruno Almeida
Análise de Dados Simbólicos
Dados Intervalares
Método de Agrupamento Possibilistic C-Means
Ruido
Outlier
title_short Agrupamento de dados simbólicos usando abordagem Possibilistic
title_full Agrupamento de dados simbólicos usando abordagem Possibilistic
title_fullStr Agrupamento de dados simbólicos usando abordagem Possibilistic
title_full_unstemmed Agrupamento de dados simbólicos usando abordagem Possibilistic
title_sort Agrupamento de dados simbólicos usando abordagem Possibilistic
author Pimentel, Bruno Almeida
author_facet Pimentel, Bruno Almeida
author_role author
dc.contributor.none.fl_str_mv Souza, Renata Maria C. R. de
dc.contributor.author.fl_str_mv Pimentel, Bruno Almeida
dc.subject.por.fl_str_mv Análise de Dados Simbólicos
Dados Intervalares
Método de Agrupamento Possibilistic C-Means
Ruido
Outlier
topic Análise de Dados Simbólicos
Dados Intervalares
Método de Agrupamento Possibilistic C-Means
Ruido
Outlier
description Este trabalho relata sobre os diferentes métodos de agrupamento presentes na literatura atual e introduz métodos de agrupamento baseado na abordagem possibilística para dados intervalares. Tem como objetivo estender os métodos clássicos de agrupamento possibilístico para dados intervalares simbólicos. Além disso, é proposto uma nova abordagem possibilística em que há um grau de pertinência diferente para cada variável e classe. A abordagem possibilística considera a pertinência como possibilidades dos objetos a classes e a partição resultante dos dados pode ser entendida como uma partição possibilística. O algoritmo conhecido dessa categoria é o Possibilístic C-Means (PCM). No PCM, a otimização da função objetivo em alguns conjuntos de dados pode ajudar a identificar outliers e dados ruidosos. A Análise de Dados Simbólico (ADS) surgiu para lidar com variáveis simbólicas, que podem ser do tipo intervalos, histogramas, e até mesmo funções, a fim de considerar a variabilidade e/ou a incerteza inata aos dados. As técnicas de ADS tornam-se uma poderosa ferramenta quando usadas em métodos de agrupamentos, o que causa um constante crescimento em pesquisas para o aprimoramento destas técnicas usadas nos mais variados algoritmos, tais como em K-Means, Support Vector Machine (SVM) e Kernel. Objetivando avaliar o desempenho dos métodos propostos e os presentes na literatura, um estudo comparativo destes métodos em relação ao agrupamento de objetos simbólicos do tipo intervalo é realizado. Foram planejados experimentos com dados sintéticos, usando o experimento Monte Carlo, e dados reais. O índice corrigido de Rand (CR) e a taxa de erro global de classificação (OERC) são usados para avaliar os métodos.
publishDate 2013
dc.date.none.fl_str_mv 2013-02-25
2015-03-09T13:28:57Z
2015-03-09T13:28:57Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/11420
url https://repositorio.ufpe.br/handle/123456789/11420
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041983000182784