Métodos robustos em análise de agrupamento para dados simbólicos

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Cristina de Assis, Elaine
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/2657
Resumo: Análise de agrupamento (cluster analysis) visa organizar um conjunto de itens em grupos tal que os itens em um dado grupo têm alto grau de similaridade, enquanto itens pertencentes a grupos diferentes têm um alto grau de dissimilaridade. Técnicas de análise de agrupamento podem ser divididas em hierárquicas e de particionamento. Métodos hierárquicos formam seqüências de partições dos dados de entrada gerando assim hierarquias completas, enquanto métodos de particionamento procuram obter uma simples partição dos dados de entrada em um número fixo de grupos. Em geral esses métodos são divididos em dois grupos de paradigmas: rígido (hard) e difuso/nebuloso (fuzzy). Os algoritmos rígidos associam um item a apenas um grupo, enquanto os algoritmos difusos/nebulosos associam um item a todos os grupos através de um grau de pertinência do item em cada grupo. Os algoritmos de agrupamento baseados em medoid são conhecidos por serem menos sensíveis na presença de observações aberrantes/ruídos. Adicionalmente, esses algoritmos são mais flexíveis uma vez que a entrada de dados é uma matriz de dissimilaridade. A fim de modelar variabilidade e/ou incerteza inerente aos dados, variáveis podem assumir conjuntos de categorias ou intervalos, possivelmente até mesmo com freqüências ou pesos. A análise de dados simbólicos (Symbolic Data Analysis) é um domínio relacionado com análise multivariada, reconhecimento de padrão e inteligência artificial para tratar com conjuntos de dados simbólicos descritos por intervalos, distribuição de peso (probabilidade) ou conjuntos de categorias. Esta dissertação apresenta métodos de agrupamento rígidos e difusos/nebulosos baseados em medoid para conjuntos de dados simbólicos. Diferentes funções de distâncias padronizadas para dados simbólicos são também investigadas. Para avaliar os métodos aplicados a dados simbólicos, foram realizados experimentos com conjuntos de dados intervalares artificiais contendo observações aberrantes e conjuntos de dados simbólicos reais mistos. Os resultados da medida de qualidade adotada demonstraram que em geral os métodos baseados em medoid obtiveram um desempenho satisfatório em relação a outros métodos de particionamento existentes na literatura de dados simbólicos
id UFPE_74a29df35192bd0c99a2d271bb5bad28
oai_identifier_str oai:repositorio.ufpe.br:123456789/2657
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Métodos robustos em análise de agrupamento para dados simbólicosAnálise de AgrupamentoAnálise de Dados SimbólicosAlgoritmos Rígido e Difuso Baseados em MedoidDados Simbólicos MistosAnálise de agrupamento (cluster analysis) visa organizar um conjunto de itens em grupos tal que os itens em um dado grupo têm alto grau de similaridade, enquanto itens pertencentes a grupos diferentes têm um alto grau de dissimilaridade. Técnicas de análise de agrupamento podem ser divididas em hierárquicas e de particionamento. Métodos hierárquicos formam seqüências de partições dos dados de entrada gerando assim hierarquias completas, enquanto métodos de particionamento procuram obter uma simples partição dos dados de entrada em um número fixo de grupos. Em geral esses métodos são divididos em dois grupos de paradigmas: rígido (hard) e difuso/nebuloso (fuzzy). Os algoritmos rígidos associam um item a apenas um grupo, enquanto os algoritmos difusos/nebulosos associam um item a todos os grupos através de um grau de pertinência do item em cada grupo. Os algoritmos de agrupamento baseados em medoid são conhecidos por serem menos sensíveis na presença de observações aberrantes/ruídos. Adicionalmente, esses algoritmos são mais flexíveis uma vez que a entrada de dados é uma matriz de dissimilaridade. A fim de modelar variabilidade e/ou incerteza inerente aos dados, variáveis podem assumir conjuntos de categorias ou intervalos, possivelmente até mesmo com freqüências ou pesos. A análise de dados simbólicos (Symbolic Data Analysis) é um domínio relacionado com análise multivariada, reconhecimento de padrão e inteligência artificial para tratar com conjuntos de dados simbólicos descritos por intervalos, distribuição de peso (probabilidade) ou conjuntos de categorias. Esta dissertação apresenta métodos de agrupamento rígidos e difusos/nebulosos baseados em medoid para conjuntos de dados simbólicos. Diferentes funções de distâncias padronizadas para dados simbólicos são também investigadas. Para avaliar os métodos aplicados a dados simbólicos, foram realizados experimentos com conjuntos de dados intervalares artificiais contendo observações aberrantes e conjuntos de dados simbólicos reais mistos. Os resultados da medida de qualidade adotada demonstraram que em geral os métodos baseados em medoid obtiveram um desempenho satisfatório em relação a outros métodos de particionamento existentes na literatura de dados simbólicosFaculdade de Amparo à Ciência e Tecnologia do Estado de PernambucoUniversidade Federal de PernambucoMaria Cardoso Rodrigues de Souza, Renata Cristina de Assis, Elaine2014-06-12T16:00:00Z2014-06-12T16:00:00Z2011-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfCristina de Assis, Elaine; Maria Cardoso Rodrigues de Souza, Renata. Métodos robustos em análise de agrupamento para dados simbólicos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/2657porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:57:21Zoai:repositorio.ufpe.br:123456789/2657Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:57:21Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Métodos robustos em análise de agrupamento para dados simbólicos
title Métodos robustos em análise de agrupamento para dados simbólicos
spellingShingle Métodos robustos em análise de agrupamento para dados simbólicos
Cristina de Assis, Elaine
Análise de Agrupamento
Análise de Dados Simbólicos
Algoritmos Rígido e Difuso Baseados em Medoid
Dados Simbólicos Mistos
title_short Métodos robustos em análise de agrupamento para dados simbólicos
title_full Métodos robustos em análise de agrupamento para dados simbólicos
title_fullStr Métodos robustos em análise de agrupamento para dados simbólicos
title_full_unstemmed Métodos robustos em análise de agrupamento para dados simbólicos
title_sort Métodos robustos em análise de agrupamento para dados simbólicos
author Cristina de Assis, Elaine
author_facet Cristina de Assis, Elaine
author_role author
dc.contributor.none.fl_str_mv Maria Cardoso Rodrigues de Souza, Renata
dc.contributor.author.fl_str_mv Cristina de Assis, Elaine
dc.subject.por.fl_str_mv Análise de Agrupamento
Análise de Dados Simbólicos
Algoritmos Rígido e Difuso Baseados em Medoid
Dados Simbólicos Mistos
topic Análise de Agrupamento
Análise de Dados Simbólicos
Algoritmos Rígido e Difuso Baseados em Medoid
Dados Simbólicos Mistos
description Análise de agrupamento (cluster analysis) visa organizar um conjunto de itens em grupos tal que os itens em um dado grupo têm alto grau de similaridade, enquanto itens pertencentes a grupos diferentes têm um alto grau de dissimilaridade. Técnicas de análise de agrupamento podem ser divididas em hierárquicas e de particionamento. Métodos hierárquicos formam seqüências de partições dos dados de entrada gerando assim hierarquias completas, enquanto métodos de particionamento procuram obter uma simples partição dos dados de entrada em um número fixo de grupos. Em geral esses métodos são divididos em dois grupos de paradigmas: rígido (hard) e difuso/nebuloso (fuzzy). Os algoritmos rígidos associam um item a apenas um grupo, enquanto os algoritmos difusos/nebulosos associam um item a todos os grupos através de um grau de pertinência do item em cada grupo. Os algoritmos de agrupamento baseados em medoid são conhecidos por serem menos sensíveis na presença de observações aberrantes/ruídos. Adicionalmente, esses algoritmos são mais flexíveis uma vez que a entrada de dados é uma matriz de dissimilaridade. A fim de modelar variabilidade e/ou incerteza inerente aos dados, variáveis podem assumir conjuntos de categorias ou intervalos, possivelmente até mesmo com freqüências ou pesos. A análise de dados simbólicos (Symbolic Data Analysis) é um domínio relacionado com análise multivariada, reconhecimento de padrão e inteligência artificial para tratar com conjuntos de dados simbólicos descritos por intervalos, distribuição de peso (probabilidade) ou conjuntos de categorias. Esta dissertação apresenta métodos de agrupamento rígidos e difusos/nebulosos baseados em medoid para conjuntos de dados simbólicos. Diferentes funções de distâncias padronizadas para dados simbólicos são também investigadas. Para avaliar os métodos aplicados a dados simbólicos, foram realizados experimentos com conjuntos de dados intervalares artificiais contendo observações aberrantes e conjuntos de dados simbólicos reais mistos. Os resultados da medida de qualidade adotada demonstraram que em geral os métodos baseados em medoid obtiveram um desempenho satisfatório em relação a outros métodos de particionamento existentes na literatura de dados simbólicos
publishDate 2011
dc.date.none.fl_str_mv 2011-01-31
2014-06-12T16:00:00Z
2014-06-12T16:00:00Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Cristina de Assis, Elaine; Maria Cardoso Rodrigues de Souza, Renata. Métodos robustos em análise de agrupamento para dados simbólicos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
https://repositorio.ufpe.br/handle/123456789/2657
identifier_str_mv Cristina de Assis, Elaine; Maria Cardoso Rodrigues de Souza, Renata. Métodos robustos em análise de agrupamento para dados simbólicos. 2011. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2011.
url https://repositorio.ufpe.br/handle/123456789/2657
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042067296256000