Γ-IRT : an item response theory model for evaluating regression algorithms

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MORAES, João Victor Campos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/50976
Resumo: Item Response Theory (IRT) is used to measure latent abilities of human respondents based on their responses to items with different difficulty levels. Recently, IRT has been applied to algorithm evaluation in Artificial Inteligence (AI), by treating the algorithms as respondents and the AI tasks as items. The most common models in IRT only deal with dichotomous responses (i.e., a response has to be either correct or incorrect). Hence they are not adequate in application contexts where responses are recorded in a continuous scale. In this dissertation we propose the Γ-IRT model, particularly designed for dealing with positive unbounded responses, which we model using a Gamma distribution, parameterised according to respondent ability and item difficulty and discrimination parameters. The proposed parameterisation results in item characteristic curves with more flexible shapes compared to the traditional logistic curves adopted in IRT. We apply the proposed model to assess regression model abilities, where responses are the absolute errors in test instances. This novel application represents an alternative for evaluating regression performance and for identifying regions in a regression dataset that present different levels of difficulty and discrimination.
id UFPE_6a3311c2a4c635ef155e1f391fd7cc2e
oai_identifier_str oai:repositorio.ufpe.br:123456789/50976
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Γ-IRT : an item response theory model for evaluating regression algorithmsInteligência artificialAprendizagem de máquinaItem Response Theory (IRT) is used to measure latent abilities of human respondents based on their responses to items with different difficulty levels. Recently, IRT has been applied to algorithm evaluation in Artificial Inteligence (AI), by treating the algorithms as respondents and the AI tasks as items. The most common models in IRT only deal with dichotomous responses (i.e., a response has to be either correct or incorrect). Hence they are not adequate in application contexts where responses are recorded in a continuous scale. In this dissertation we propose the Γ-IRT model, particularly designed for dealing with positive unbounded responses, which we model using a Gamma distribution, parameterised according to respondent ability and item difficulty and discrimination parameters. The proposed parameterisation results in item characteristic curves with more flexible shapes compared to the traditional logistic curves adopted in IRT. We apply the proposed model to assess regression model abilities, where responses are the absolute errors in test instances. This novel application represents an alternative for evaluating regression performance and for identifying regions in a regression dataset that present different levels of difficulty and discrimination.FACEPETeoria da Resposta ao Item (IRT) é usada para medir habilidades latentes de respondentes humanos com base em suas respostas a itens com diferentes níveis de dificuldade. Recentemente, IRT tem sido aplicada à avaliação de algoritmos de Inteligência Artificial (IA), tratando os algoritmos como respondentes e as tarefas de IA como itens. Os modelos mais comuns em IRT lidam apenas com respostas dicotômicas (ou seja, uma resposta deve ser correta ou incorreta). Portanto, não são adequados em contextos de aplicação onde as respostas são registradas em escala contínua. Nesta dissertação propomos o modelo Γ-IRT, especialmente concebido para lidar com respostas positivas ilimitadas, que modelamos usando uma distribuição Gama, parametrizada de acordo com a habilidade do respondente e parâmetros de dificuldade e discriminação do item. A parametrização proposta resulta em curvas características de itens com formatos mais flexíveis em relação às curvas logísticas tradicionais adotadas em IRT. Aplicamos o modelo proposto para avaliar as habilidades do modelo de regressão, onde as respostas são os erros absolutos nas instâncias de teste. Esta nova aplicação representa uma alternativa para avaliar o desempenho da regressão e para identificar regiões em um conjunto de dados de regressão que apresentam diferentes níveis de dificuldade e discriminação.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoPRUDÊNCIO, Ricardo Bastos CavalcanteSILVA FILHO, Telmo de Menezes ehttp://lattes.cnpq.br/6417754781077123http://lattes.cnpq.br/2984888073123287http://lattes.cnpq.br/4640945954423515MORAES, João Victor Campos2023-06-12T12:58:28Z2023-06-12T12:58:28Z2021-03-09info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMORAES, João Victor Campos. Γ-IRT: an item response theory model for evaluating regression algorithms. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/50976enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-06-13T05:34:02Zoai:repositorio.ufpe.br:123456789/50976Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-06-13T05:34:02Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Γ-IRT : an item response theory model for evaluating regression algorithms
title Γ-IRT : an item response theory model for evaluating regression algorithms
spellingShingle Γ-IRT : an item response theory model for evaluating regression algorithms
MORAES, João Victor Campos
Inteligência artificial
Aprendizagem de máquina
title_short Γ-IRT : an item response theory model for evaluating regression algorithms
title_full Γ-IRT : an item response theory model for evaluating regression algorithms
title_fullStr Γ-IRT : an item response theory model for evaluating regression algorithms
title_full_unstemmed Γ-IRT : an item response theory model for evaluating regression algorithms
title_sort Γ-IRT : an item response theory model for evaluating regression algorithms
author MORAES, João Victor Campos
author_facet MORAES, João Victor Campos
author_role author
dc.contributor.none.fl_str_mv PRUDÊNCIO, Ricardo Bastos Cavalcante
SILVA FILHO, Telmo de Menezes e
http://lattes.cnpq.br/6417754781077123
http://lattes.cnpq.br/2984888073123287
http://lattes.cnpq.br/4640945954423515
dc.contributor.author.fl_str_mv MORAES, João Victor Campos
dc.subject.por.fl_str_mv Inteligência artificial
Aprendizagem de máquina
topic Inteligência artificial
Aprendizagem de máquina
description Item Response Theory (IRT) is used to measure latent abilities of human respondents based on their responses to items with different difficulty levels. Recently, IRT has been applied to algorithm evaluation in Artificial Inteligence (AI), by treating the algorithms as respondents and the AI tasks as items. The most common models in IRT only deal with dichotomous responses (i.e., a response has to be either correct or incorrect). Hence they are not adequate in application contexts where responses are recorded in a continuous scale. In this dissertation we propose the Γ-IRT model, particularly designed for dealing with positive unbounded responses, which we model using a Gamma distribution, parameterised according to respondent ability and item difficulty and discrimination parameters. The proposed parameterisation results in item characteristic curves with more flexible shapes compared to the traditional logistic curves adopted in IRT. We apply the proposed model to assess regression model abilities, where responses are the absolute errors in test instances. This novel application represents an alternative for evaluating regression performance and for identifying regions in a regression dataset that present different levels of difficulty and discrimination.
publishDate 2021
dc.date.none.fl_str_mv 2021-03-09
2023-06-12T12:58:28Z
2023-06-12T12:58:28Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MORAES, João Victor Campos. Γ-IRT: an item response theory model for evaluating regression algorithms. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.
https://repositorio.ufpe.br/handle/123456789/50976
identifier_str_mv MORAES, João Victor Campos. Γ-IRT: an item response theory model for evaluating regression algorithms. 2021. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/50976
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041898606592000