Modelo de séries temporais para a previsão da arrecadação tributária federal
| Ano de defesa: | 2002 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/4535 |
Resumo: | A presente dissertação tem como principal objetivo apresentar uma metodologia alternativa para a previsão das receitas tributárias federais administradas pela Secretaria da Receita Federal. Optou-se, então, pela utilização da metodologia de Box-Jenkins, especificamente o modelo Auto-Regressivo Integrado de Médias Móveis Sazonal SARIMA. O estudo será apresentado em 4 partes principais, assim desenvolvidas: revisão bibliográfica, natureza dos dados, apresentação e discussão dos resultados. A revisão bibliográfica trará uma discussão geral sobre a previsão de receitas públicas e sobre o tratamento estatístico de séries temporais; apresentando, inclusive, a justificativa da opção pela metodologia de Box-Jenkins. Particularmente, em relação às séries temporais, serão apresentados os principais conceitos que norteiam o seu estudo, tais como: estacionariedade, estocasticidade, processos auto-regressivos AR(p), de médias móveis MA(q) e mistos (auto-regressivos e de médias móveis) ARMA(p, q). Na parte referente à natureza dos dados, serão apresentadas as séries tributárias objetos do presente estudo, os fatos que afetaram a arrecadação tributária federal no período, além do tratamento imposto aos dados em relação às mudanças estruturais observadas, à remoção de pontos discrepantes ( outliers ) e à correção com base em um índice geral de preços. A parte referente à apresentação dos resultados trará os procedimentos utilizados na modelagem das séries tributárias, procedendo-se à identificação do modelo e sua respectiva estimação, à verificação de diagnóstico e, por fim, à previsão para cada um dos modelos selecionados. Na parte final do trabalho, discutir-se-á os resultados obtidos, comparando-se as previsões obtidas pela metodologia de Box-Jenkins com aquelas originadas do método de indicadores utilizado pela Secretaria da Receita Federal, determinando-se quais seriam os melhores modelos para previsão dos valores futuros de cada uma das séries tributárias estudadas |
| id |
UFPE_77d898889a001c6efff7a7fc361b6114 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/4535 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Modelo de séries temporais para a previsão da arrecadação tributária federalSéries temporaisArrecadação de tributosPrevisãoA presente dissertação tem como principal objetivo apresentar uma metodologia alternativa para a previsão das receitas tributárias federais administradas pela Secretaria da Receita Federal. Optou-se, então, pela utilização da metodologia de Box-Jenkins, especificamente o modelo Auto-Regressivo Integrado de Médias Móveis Sazonal SARIMA. O estudo será apresentado em 4 partes principais, assim desenvolvidas: revisão bibliográfica, natureza dos dados, apresentação e discussão dos resultados. A revisão bibliográfica trará uma discussão geral sobre a previsão de receitas públicas e sobre o tratamento estatístico de séries temporais; apresentando, inclusive, a justificativa da opção pela metodologia de Box-Jenkins. Particularmente, em relação às séries temporais, serão apresentados os principais conceitos que norteiam o seu estudo, tais como: estacionariedade, estocasticidade, processos auto-regressivos AR(p), de médias móveis MA(q) e mistos (auto-regressivos e de médias móveis) ARMA(p, q). Na parte referente à natureza dos dados, serão apresentadas as séries tributárias objetos do presente estudo, os fatos que afetaram a arrecadação tributária federal no período, além do tratamento imposto aos dados em relação às mudanças estruturais observadas, à remoção de pontos discrepantes ( outliers ) e à correção com base em um índice geral de preços. A parte referente à apresentação dos resultados trará os procedimentos utilizados na modelagem das séries tributárias, procedendo-se à identificação do modelo e sua respectiva estimação, à verificação de diagnóstico e, por fim, à previsão para cada um dos modelos selecionados. Na parte final do trabalho, discutir-se-á os resultados obtidos, comparando-se as previsões obtidas pela metodologia de Box-Jenkins com aquelas originadas do método de indicadores utilizado pela Secretaria da Receita Federal, determinando-se quais seriam os melhores modelos para previsão dos valores futuros de cada uma das séries tributárias estudadasUniversidade Federal de PernambucoChaves Lima, Ricardo Lettieri Siqueira, Marcelo2014-06-12T17:21:51Z2014-06-12T17:21:51Z2002info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfLettieri Siqueira, Marcelo; Chaves Lima, Ricardo. Modelo de séries temporais para a previsão da arrecadação tributária federal. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2002.https://repositorio.ufpe.br/handle/123456789/4535porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T06:21:11Zoai:repositorio.ufpe.br:123456789/4535Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T06:21:11Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| title |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| spellingShingle |
Modelo de séries temporais para a previsão da arrecadação tributária federal Lettieri Siqueira, Marcelo Séries temporais Arrecadação de tributos Previsão |
| title_short |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| title_full |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| title_fullStr |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| title_full_unstemmed |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| title_sort |
Modelo de séries temporais para a previsão da arrecadação tributária federal |
| author |
Lettieri Siqueira, Marcelo |
| author_facet |
Lettieri Siqueira, Marcelo |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Chaves Lima, Ricardo |
| dc.contributor.author.fl_str_mv |
Lettieri Siqueira, Marcelo |
| dc.subject.por.fl_str_mv |
Séries temporais Arrecadação de tributos Previsão |
| topic |
Séries temporais Arrecadação de tributos Previsão |
| description |
A presente dissertação tem como principal objetivo apresentar uma metodologia alternativa para a previsão das receitas tributárias federais administradas pela Secretaria da Receita Federal. Optou-se, então, pela utilização da metodologia de Box-Jenkins, especificamente o modelo Auto-Regressivo Integrado de Médias Móveis Sazonal SARIMA. O estudo será apresentado em 4 partes principais, assim desenvolvidas: revisão bibliográfica, natureza dos dados, apresentação e discussão dos resultados. A revisão bibliográfica trará uma discussão geral sobre a previsão de receitas públicas e sobre o tratamento estatístico de séries temporais; apresentando, inclusive, a justificativa da opção pela metodologia de Box-Jenkins. Particularmente, em relação às séries temporais, serão apresentados os principais conceitos que norteiam o seu estudo, tais como: estacionariedade, estocasticidade, processos auto-regressivos AR(p), de médias móveis MA(q) e mistos (auto-regressivos e de médias móveis) ARMA(p, q). Na parte referente à natureza dos dados, serão apresentadas as séries tributárias objetos do presente estudo, os fatos que afetaram a arrecadação tributária federal no período, além do tratamento imposto aos dados em relação às mudanças estruturais observadas, à remoção de pontos discrepantes ( outliers ) e à correção com base em um índice geral de preços. A parte referente à apresentação dos resultados trará os procedimentos utilizados na modelagem das séries tributárias, procedendo-se à identificação do modelo e sua respectiva estimação, à verificação de diagnóstico e, por fim, à previsão para cada um dos modelos selecionados. Na parte final do trabalho, discutir-se-á os resultados obtidos, comparando-se as previsões obtidas pela metodologia de Box-Jenkins com aquelas originadas do método de indicadores utilizado pela Secretaria da Receita Federal, determinando-se quais seriam os melhores modelos para previsão dos valores futuros de cada uma das séries tributárias estudadas |
| publishDate |
2002 |
| dc.date.none.fl_str_mv |
2002 2014-06-12T17:21:51Z 2014-06-12T17:21:51Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Lettieri Siqueira, Marcelo; Chaves Lima, Ricardo. Modelo de séries temporais para a previsão da arrecadação tributária federal. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2002. https://repositorio.ufpe.br/handle/123456789/4535 |
| identifier_str_mv |
Lettieri Siqueira, Marcelo; Chaves Lima, Ricardo. Modelo de séries temporais para a previsão da arrecadação tributária federal. 2002. Dissertação (Mestrado). Programa de Pós-Graduação em Economia, Universidade Federal de Pernambuco, Recife, 2002. |
| url |
https://repositorio.ufpe.br/handle/123456789/4535 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041921165656064 |