Classificação não supervisionada no contexto de tamanho e forma
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/44679 |
Resumo: | Esta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método. |
| id |
UFPE_81d53e9ec0de80b82324316ddf44c237 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/44679 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Classificação não supervisionada no contexto de tamanho e formaEstatística aplicadaBaggingBoostingHill climbingk-médiasEsta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método.FACEPEThis master thesis aims to propose unsupervised classification methods for size and shape data, considering two-dimensional images (planar shape). The new methods are based on hy- pothesis testing, K-means algorithm and hill climbing algorithm. We also propose combinations of algorithms, with ensemble methods: bagging and boosting. For the simulated data, gener- ated from the complex normal distribution, we propose three possible scenarios to evaluate the performance of the proposed methods. In them, the combinations of the algorithms were superior to their base versions, with the bagging hill climbing algorithm being the most pow- erful in two scenarios. Also from the numerical results, we conclude that when the centroid sizes are different, the performance of the algorithms improves. For the real data sets (T2 thoracic vertebrae of mice, magnetic resonance imaging of people with schizophrenia and skull of great apes), the ensembles methods were again the highlight, being always superior to the base versions, the bagging and boosting methods achieve the best performance in data sets. Finally, considering the synthetic and real data, bagging hill climbing is chosen as the best method.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaAMARAL, Getúlio José Amorim dohttp://lattes.cnpq.br/8620522198353132http://lattes.cnpq.br/7674916684282039HONÓRIO, Jerfson Bruno do Nascimento2022-06-08T19:10:55Z2022-06-08T19:10:55Z2022-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfHONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/44679porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-06-09T05:20:31Zoai:repositorio.ufpe.br:123456789/44679Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-06-09T05:20:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Classificação não supervisionada no contexto de tamanho e forma |
| title |
Classificação não supervisionada no contexto de tamanho e forma |
| spellingShingle |
Classificação não supervisionada no contexto de tamanho e forma HONÓRIO, Jerfson Bruno do Nascimento Estatística aplicada Bagging Boosting Hill climbing k-médias |
| title_short |
Classificação não supervisionada no contexto de tamanho e forma |
| title_full |
Classificação não supervisionada no contexto de tamanho e forma |
| title_fullStr |
Classificação não supervisionada no contexto de tamanho e forma |
| title_full_unstemmed |
Classificação não supervisionada no contexto de tamanho e forma |
| title_sort |
Classificação não supervisionada no contexto de tamanho e forma |
| author |
HONÓRIO, Jerfson Bruno do Nascimento |
| author_facet |
HONÓRIO, Jerfson Bruno do Nascimento |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
AMARAL, Getúlio José Amorim do http://lattes.cnpq.br/8620522198353132 http://lattes.cnpq.br/7674916684282039 |
| dc.contributor.author.fl_str_mv |
HONÓRIO, Jerfson Bruno do Nascimento |
| dc.subject.por.fl_str_mv |
Estatística aplicada Bagging Boosting Hill climbing k-médias |
| topic |
Estatística aplicada Bagging Boosting Hill climbing k-médias |
| description |
Esta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-06-08T19:10:55Z 2022-06-08T19:10:55Z 2022-02-17 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
HONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022. https://repositorio.ufpe.br/handle/123456789/44679 |
| identifier_str_mv |
HONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022. |
| url |
https://repositorio.ufpe.br/handle/123456789/44679 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041842859048960 |