Classificação não supervisionada no contexto de tamanho e forma

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: HONÓRIO, Jerfson Bruno do Nascimento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/44679
Resumo: Esta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método.
id UFPE_81d53e9ec0de80b82324316ddf44c237
oai_identifier_str oai:repositorio.ufpe.br:123456789/44679
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Classificação não supervisionada no contexto de tamanho e formaEstatística aplicadaBaggingBoostingHill climbingk-médiasEsta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método.FACEPEThis master thesis aims to propose unsupervised classification methods for size and shape data, considering two-dimensional images (planar shape). The new methods are based on hy- pothesis testing, K-means algorithm and hill climbing algorithm. We also propose combinations of algorithms, with ensemble methods: bagging and boosting. For the simulated data, gener- ated from the complex normal distribution, we propose three possible scenarios to evaluate the performance of the proposed methods. In them, the combinations of the algorithms were superior to their base versions, with the bagging hill climbing algorithm being the most pow- erful in two scenarios. Also from the numerical results, we conclude that when the centroid sizes are different, the performance of the algorithms improves. For the real data sets (T2 thoracic vertebrae of mice, magnetic resonance imaging of people with schizophrenia and skull of great apes), the ensembles methods were again the highlight, being always superior to the base versions, the bagging and boosting methods achieve the best performance in data sets. Finally, considering the synthetic and real data, bagging hill climbing is chosen as the best method.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaAMARAL, Getúlio José Amorim dohttp://lattes.cnpq.br/8620522198353132http://lattes.cnpq.br/7674916684282039HONÓRIO, Jerfson Bruno do Nascimento2022-06-08T19:10:55Z2022-06-08T19:10:55Z2022-02-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfHONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/44679porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-06-09T05:20:31Zoai:repositorio.ufpe.br:123456789/44679Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-06-09T05:20:31Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Classificação não supervisionada no contexto de tamanho e forma
title Classificação não supervisionada no contexto de tamanho e forma
spellingShingle Classificação não supervisionada no contexto de tamanho e forma
HONÓRIO, Jerfson Bruno do Nascimento
Estatística aplicada
Bagging
Boosting
Hill climbing
k-médias
title_short Classificação não supervisionada no contexto de tamanho e forma
title_full Classificação não supervisionada no contexto de tamanho e forma
title_fullStr Classificação não supervisionada no contexto de tamanho e forma
title_full_unstemmed Classificação não supervisionada no contexto de tamanho e forma
title_sort Classificação não supervisionada no contexto de tamanho e forma
author HONÓRIO, Jerfson Bruno do Nascimento
author_facet HONÓRIO, Jerfson Bruno do Nascimento
author_role author
dc.contributor.none.fl_str_mv AMARAL, Getúlio José Amorim do
http://lattes.cnpq.br/8620522198353132
http://lattes.cnpq.br/7674916684282039
dc.contributor.author.fl_str_mv HONÓRIO, Jerfson Bruno do Nascimento
dc.subject.por.fl_str_mv Estatística aplicada
Bagging
Boosting
Hill climbing
k-médias
topic Estatística aplicada
Bagging
Boosting
Hill climbing
k-médias
description Esta dissertação tem como objetivo propor métodos não supervisionados de classificação para dados de tamanho e forma, considerando imagens bidimensionais (formas planas). Os novos métodos são baseados em testes de hipóteses, algoritmo K-médias e o algoritmo hill climbing. Também propomos as combinações dos algoritmos, com os métodos de ensemble: bagging e boosting. Para os dados simulados, gerados a partir da distribuição normal complexa, propomos três possíveis cenários para avaliar o desempenho dos métodos propostos. Neles, as combinações dos algoritmos foram superiores às suas versões base, sendo o algoritmo bagging hill climbing, o mais poderoso em dois cenários. Ainda pelos resultados numéricos, concluímos que quando os tamanhos dos centroides se diferenciam, o desempenho dos algoritmos me- lhora. Para os conjuntos de dados reais (vértebras torácicas T2 de camundongos,ressonância magnética de pessoas com esquizofrenia e crânio de grandes macacos), os métodos ensembles (bagging e boosting) novamente foram o destaque, sendo sempre superiores às versões base. Finalmente, considerando os dados sintéticos e reais, o bagging hill climbing é escolhido como o melhor método.
publishDate 2022
dc.date.none.fl_str_mv 2022-06-08T19:10:55Z
2022-06-08T19:10:55Z
2022-02-17
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv HONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.
https://repositorio.ufpe.br/handle/123456789/44679
identifier_str_mv HONÓRIO, Jerfson Bruno do Nascimento. Classificação não supervisionada no contexto de tamanho e forma. Dissertação (Mestrado em Estatística) - Universidade Federal de Pernambuco, Recife, 2022.
url https://repositorio.ufpe.br/handle/123456789/44679
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041842859048960