Modelagem e Inferência em Regressão Beta

Detalhes bibliográficos
Ano de defesa: 2011
Autor(a) principal: Mariano Bayer, Fábio
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
AIC
Link de acesso: https://repositorio.ufpe.br/handle/123456789/6061
Resumo: Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostos
id UFPE_8e7cfd29cc78f9b8dca19c2456e91ca1
oai_identifier_str oai:repositorio.ufpe.br:123456789/6061
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Modelagem e Inferência em Regressão BetaAICAjustes para pequenas amostrasBootstrapCorreção de BartlettCritérios de seleção de modelosDispersão variávelRegressão betaTeste da razão de verossimilhançasEsta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostosCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de PernambucoCribari Neto, Francisco Mariano Bayer, Fábio2014-06-12T18:01:37Z2014-06-12T18:01:37Z2011-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/6061porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T14:56:16Zoai:repositorio.ufpe.br:123456789/6061Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:56:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Modelagem e Inferência em Regressão Beta
title Modelagem e Inferência em Regressão Beta
spellingShingle Modelagem e Inferência em Regressão Beta
Mariano Bayer, Fábio
AIC
Ajustes para pequenas amostras
Bootstrap
Correção de Bartlett
Critérios de seleção de modelos
Dispersão variável
Regressão beta
Teste da razão de verossimilhanças
title_short Modelagem e Inferência em Regressão Beta
title_full Modelagem e Inferência em Regressão Beta
title_fullStr Modelagem e Inferência em Regressão Beta
title_full_unstemmed Modelagem e Inferência em Regressão Beta
title_sort Modelagem e Inferência em Regressão Beta
author Mariano Bayer, Fábio
author_facet Mariano Bayer, Fábio
author_role author
dc.contributor.none.fl_str_mv Cribari Neto, Francisco
dc.contributor.author.fl_str_mv Mariano Bayer, Fábio
dc.subject.por.fl_str_mv AIC
Ajustes para pequenas amostras
Bootstrap
Correção de Bartlett
Critérios de seleção de modelos
Dispersão variável
Regressão beta
Teste da razão de verossimilhanças
topic AIC
Ajustes para pequenas amostras
Bootstrap
Correção de Bartlett
Critérios de seleção de modelos
Dispersão variável
Regressão beta
Teste da razão de verossimilhanças
description Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostos
publishDate 2011
dc.date.none.fl_str_mv 2011-01-31
2014-06-12T18:01:37Z
2014-06-12T18:01:37Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv Mariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.
https://repositorio.ufpe.br/handle/123456789/6061
identifier_str_mv Mariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.
url https://repositorio.ufpe.br/handle/123456789/6061
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042030765965312