Modelagem e Inferência em Regressão Beta
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/6061 |
Resumo: | Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostos |
| id |
UFPE_8e7cfd29cc78f9b8dca19c2456e91ca1 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/6061 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Modelagem e Inferência em Regressão BetaAICAjustes para pequenas amostrasBootstrapCorreção de BartlettCritérios de seleção de modelosDispersão variávelRegressão betaTeste da razão de verossimilhançasEsta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostosCoordenação de Aperfeiçoamento de Pessoal de Nível SuperiorUniversidade Federal de PernambucoCribari Neto, Francisco Mariano Bayer, Fábio2014-06-12T18:01:37Z2014-06-12T18:01:37Z2011-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfMariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011.https://repositorio.ufpe.br/handle/123456789/6061porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T14:56:16Zoai:repositorio.ufpe.br:123456789/6061Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T14:56:16Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Modelagem e Inferência em Regressão Beta |
| title |
Modelagem e Inferência em Regressão Beta |
| spellingShingle |
Modelagem e Inferência em Regressão Beta Mariano Bayer, Fábio AIC Ajustes para pequenas amostras Bootstrap Correção de Bartlett Critérios de seleção de modelos Dispersão variável Regressão beta Teste da razão de verossimilhanças |
| title_short |
Modelagem e Inferência em Regressão Beta |
| title_full |
Modelagem e Inferência em Regressão Beta |
| title_fullStr |
Modelagem e Inferência em Regressão Beta |
| title_full_unstemmed |
Modelagem e Inferência em Regressão Beta |
| title_sort |
Modelagem e Inferência em Regressão Beta |
| author |
Mariano Bayer, Fábio |
| author_facet |
Mariano Bayer, Fábio |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cribari Neto, Francisco |
| dc.contributor.author.fl_str_mv |
Mariano Bayer, Fábio |
| dc.subject.por.fl_str_mv |
AIC Ajustes para pequenas amostras Bootstrap Correção de Bartlett Critérios de seleção de modelos Dispersão variável Regressão beta Teste da razão de verossimilhanças |
| topic |
AIC Ajustes para pequenas amostras Bootstrap Correção de Bartlett Critérios de seleção de modelos Dispersão variável Regressão beta Teste da razão de verossimilhanças |
| description |
Esta tese aborda aspectos de modelagem e inferência em regressão beta, mais especificamente melhoramentos do teste de razão da verossimilhanças e proposição e investigação de critérios de seleção de modelos. O modelo de regressão beta foi proposto por Ferrari e Cribari-Neto [2004. Beta regression for modeling rates and proportions. J. Appl. Statist. 31, 799 815] para modelar variáveis contínuas no intervalo (0;1), como taxas e proporções. No primeiro capítulo, abordamos o problema de inferência em pequenas amostras. Focamos no melhoramento do teste da razão de verossimilhanças. Consideramos correções de segunda ordem para a estatística da razão de verossimilhanças em regressão beta em duas abordagens. Determinamos, por meio de uma abordagem matricial, o fator de correção de Bartlett e também uma correção de Bartlett Bootstrap. Comparamos os testes baseados nas estatísticas corrigidas com o teste da razão de verossimilhanças usual e com o teste que utiliza o ajuste de Skovgaard, que já está proposto na literatura. Os resultados numéricos evidenciam que as correções de Bartlett são mais acuradas do que a estatística não corrigida e do que o ajuste de Skovgaard. No segundo e terceiro capítulos, expandimos o modelo de regressão beta proposto por Ferrari e Cribari-Neto, considerando um modelo que assume que o parâmetro de dispersão, assim como o parâmetro de média, varia ao longo das observações e pode ser modelado por meio de uma estrutura de regressão. Com isso, surge o problema da seleção de variáveis, tanto para a estrutura da média quanto para a da dispersão. Esse assunto é tratado em dois capítulos independentes e auto-contidos, porém, ambos relacionados. No Capítulo 2 propomos critérios de seleção para modelos com dispersão variável e investigamos, por meio de simulação de Monte Carlo, os desempenhos destes e de outros critérios de seleção em amostras de tamanho finito. Percebemos que o processo de seleção conjunta de regressores para a média e para a dispersão não é uma boa prática e propomos um esquema de seleção em duas etapas. A seleção de modelos com o esquema proposto, além de requerer um menor custo computacional, apresentou melhor desempenho do que o método usual de seleção. Dentre os critérios investigados encontra-se o critério de informação de Akaike (AIC). O AIC é, sem dúvida, o critério mais conhecido e aplicado em diferentes classes de modelos. Baseados no AIC diversos critérios têm sido propostos, dentre eles o SIC, o HQ e o AICc. Com o objetivo de estimar o valor esperado da log-verossimilhança, que é uma medida de discrepância entre o modelo verdadeiro e o modelo candidato estimado, Akaike obtém o AIC como uma correção assintótica para a log-verossimilhança esperada. No entanto, em pequenas amostras, ou quando o número de parâmetros do modelo é grande relativamente ao tamanho amostral, o AIC se torna viesado e tende a selecionar modelos com alta dimensionalidade. Ao considerarmos uma estrutura de regressão também para o parâmetro de dispersão introduzimos um maior número de parâmetros a serem estimados no modelo. Isso pode diminuir o desempenho dos critérios de seleção quando o tamanho amostral é pequeno ou moderado. Para contornar esse problema propomos no Capítulo 3 novos critérios de seleção para serem usados em pequenas amostras, denominados bootstrap likelihood quasi-CV (BQCV) e sua modificação 632QCV. Comparamos os desempenhos dos critérios propostos, do AIC e de suas diversas variações que utilizam log-verossimilhança bootstrap por meio de um extensivo estudo de simulação. Os resultados numéricos evidenciam o bom desempenho dos critérios propostos |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-01-31 2014-06-12T18:01:37Z 2014-06-12T18:01:37Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
Mariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011. https://repositorio.ufpe.br/handle/123456789/6061 |
| identifier_str_mv |
Mariano Bayer, Fábio; Cribari Neto, Francisco. Modelagem e Inferência em Regressão Beta. 2011. Tese (Doutorado). Programa de Pós-Graduação em Estatística, Universidade Federal de Pernambuco, Recife, 2011. |
| url |
https://repositorio.ufpe.br/handle/123456789/6061 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042030765965312 |