Dynamic ensemble selection forecasting system based on trend classification

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: SALES, Jair Paulino de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/59888
Resumo: Dynamic Ensemble Selection systems (DES) have been proposed as an useful alternative for modeling and forecasting time series. The basic idea is to assess the performance of single models and select the best ones for predicting a new test instance. One of the most common selection strategies involves constructing regions of competence (RoC). In this case, based on a new test instance to be predicted, one evaluates which instances from the training and/or validation set are most similar using a similarity metric. However, the absence of similar pat- terns between the test and training/validation sets compromises the quality of the RoC and adversely affects the predictive capabilities of these systems. Besides, the choice of which similarity measure to adopt is a complex and ongoing research problem. Consequently, the fol- lowing question arose: “How to conduct the selection phase considering structural changes in terms of trend in the time series, without relying on similarity measures?”. This thesis proposes a new DES approach, Dynamic Ensemble Selection based on Trend Classification (DESTC), which uses trend analysis to select the models to be combined. Trend is the prevailing direc- tion or pattern in data observed over time. DESTC consists of two main phases: the training phase (a), in which a pool of models is evaluated to determine the best ones for each trend class, and the testing phase (b), in which each new instance has its trend assessed, and the top-performing models are selected for prediction. To evaluate the predictive performance of DESTC, two experiments were conducted. In Experiment A, the proposed approach was ap- plied to COVID-19 incidence time series data from eight countries and compared with single and ensemble-based algorithms from the literature. The proposed approach achieved superior forecasting performance and lower computational cost. In Experiment B, DESTC was further evaluated on time series exhibiting distinct characteristics from various phenomena. The results demonstrated that DESTC is a competitive alternative to other Multiple Predictor Systems (MPS). The main limitation of the proposed method is that DESTC tends to have lower predictive performance when the time series lacks a clear trend cycle pattern, making model selection based on trend classification impractical. Moreover, the results presented and dis- cussed in both experiments demonstrate that the proposed method, DESTC, is a competitive alternative to other MPSs found in the literature.
id UFPE_9f3335051e8cfd92adfb4f6f2ff24339
oai_identifier_str oai:repositorio.ufpe.br:123456789/59888
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Dynamic ensemble selection forecasting system based on trend classificationDynamic Ensemble SelectionTrend ClassificationModel SelectionTime SeriesForecastingDynamic Ensemble Selection systems (DES) have been proposed as an useful alternative for modeling and forecasting time series. The basic idea is to assess the performance of single models and select the best ones for predicting a new test instance. One of the most common selection strategies involves constructing regions of competence (RoC). In this case, based on a new test instance to be predicted, one evaluates which instances from the training and/or validation set are most similar using a similarity metric. However, the absence of similar pat- terns between the test and training/validation sets compromises the quality of the RoC and adversely affects the predictive capabilities of these systems. Besides, the choice of which similarity measure to adopt is a complex and ongoing research problem. Consequently, the fol- lowing question arose: “How to conduct the selection phase considering structural changes in terms of trend in the time series, without relying on similarity measures?”. This thesis proposes a new DES approach, Dynamic Ensemble Selection based on Trend Classification (DESTC), which uses trend analysis to select the models to be combined. Trend is the prevailing direc- tion or pattern in data observed over time. DESTC consists of two main phases: the training phase (a), in which a pool of models is evaluated to determine the best ones for each trend class, and the testing phase (b), in which each new instance has its trend assessed, and the top-performing models are selected for prediction. To evaluate the predictive performance of DESTC, two experiments were conducted. In Experiment A, the proposed approach was ap- plied to COVID-19 incidence time series data from eight countries and compared with single and ensemble-based algorithms from the literature. The proposed approach achieved superior forecasting performance and lower computational cost. In Experiment B, DESTC was further evaluated on time series exhibiting distinct characteristics from various phenomena. The results demonstrated that DESTC is a competitive alternative to other Multiple Predictor Systems (MPS). The main limitation of the proposed method is that DESTC tends to have lower predictive performance when the time series lacks a clear trend cycle pattern, making model selection based on trend classification impractical. Moreover, the results presented and dis- cussed in both experiments demonstrate that the proposed method, DESTC, is a competitive alternative to other MPSs found in the literature.Sistemas de Seleção Dinâmica têm sido propostos como uma alternativa útil para modelagem e previsão de séries temporais. Seu funcionamento avalia modelos em um conjunto (pool) para selecionar os mais competentes e os utilizar na previsão de novas instâncias de teste. Uma estratégia comum de seleção é a construção de regiões de competência (RoC), a partir da qual se avalia, com base na nova instância de teste, quais instâncias do conjunto de treinamento e/ou validação são mais semelhantes usando uma métrica de similaridade. No entanto, a ausência de padrões similares entre os conjuntos de teste e de treinamento/validação compromete a qualidade da RoC e afeta negativamente a capacidade preditiva desses sistemas. Além disso, a escolha de qual métrica de similaridade utilizar é um problema de pesquisa complexo e ainda em estudo. Neste sentido, surge a seguinte questão de pesquisa: “Como conduzir a fase de seleção considerando mudanças estruturais em termos de tendência na série temporal, sem depender de medidas de similaridade?”. Esta tese propõe uma nova abordagem de seleção dinâmica, denominada Dynamic Ensemble Selection based on Trend Classification (DESTC), que utiliza análise de tendências para selecionar os modelos a serem combinados. O DESTC possui duas fases principais: a fase de treinamento (a), na qual um conjunto de modelos é avaliado para determinar os melhores para cada classe de tendência; e a fase de teste (b), na qual cada nova instância tem sua tendência avaliada, e os modelos com melhor desempenho são selecionados para a previsão. Para avaliar o desempenho preditivo do DESTC, foram conduzidos dois experimentos. No Experimento A, a abordagem proposta foi aplicada aos dados de séries temporais de incidência de COVID-19 de oito países e comparada com modelos únicos e ensembles já bem conhecidos na literatura. A abordagem proposta alcançou desempenho de previsão superior e menor custo computacional. No Experimento B, o DESTC foi avaliado em séries temporais que apresentam características diversas. Os resultados demonstraram que o DESTC é uma alternativa competitiva em relação a outros algoritmos. A principal limitação do método proposto é que o DESTC tem desempenho preditivo inferior quando a série temporal não possui um padrão bem definido de ciclos de tendência. Por fim, os resultados apresentados demonstram que o método proposto é uma alternativa competitiva em relação a outros sistemas de selação dinâmica encontrados na literatura.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoMATTOS NETO, Paulo Salgado Gomes deFIRMINO, Paulo Renato Alveshttp://lattes.cnpq.br/7099203116962634http://lattes.cnpq.br/4610098557429398http://lattes.cnpq.br/8548404880587575SALES, Jair Paulino de2025-01-21T15:00:08Z2025-01-21T15:00:08Z2024-08-02info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSALES, Jair Paulino de. Dynamic ensemble selection forecasting system based on trend classification. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024https://repositorio.ufpe.br/handle/123456789/59888engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-01-23T05:43:43Zoai:repositorio.ufpe.br:123456789/59888Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-01-23T05:43:43Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Dynamic ensemble selection forecasting system based on trend classification
title Dynamic ensemble selection forecasting system based on trend classification
spellingShingle Dynamic ensemble selection forecasting system based on trend classification
SALES, Jair Paulino de
Dynamic Ensemble Selection
Trend Classification
Model Selection
Time Series
Forecasting
title_short Dynamic ensemble selection forecasting system based on trend classification
title_full Dynamic ensemble selection forecasting system based on trend classification
title_fullStr Dynamic ensemble selection forecasting system based on trend classification
title_full_unstemmed Dynamic ensemble selection forecasting system based on trend classification
title_sort Dynamic ensemble selection forecasting system based on trend classification
author SALES, Jair Paulino de
author_facet SALES, Jair Paulino de
author_role author
dc.contributor.none.fl_str_mv MATTOS NETO, Paulo Salgado Gomes de
FIRMINO, Paulo Renato Alves
http://lattes.cnpq.br/7099203116962634
http://lattes.cnpq.br/4610098557429398
http://lattes.cnpq.br/8548404880587575
dc.contributor.author.fl_str_mv SALES, Jair Paulino de
dc.subject.por.fl_str_mv Dynamic Ensemble Selection
Trend Classification
Model Selection
Time Series
Forecasting
topic Dynamic Ensemble Selection
Trend Classification
Model Selection
Time Series
Forecasting
description Dynamic Ensemble Selection systems (DES) have been proposed as an useful alternative for modeling and forecasting time series. The basic idea is to assess the performance of single models and select the best ones for predicting a new test instance. One of the most common selection strategies involves constructing regions of competence (RoC). In this case, based on a new test instance to be predicted, one evaluates which instances from the training and/or validation set are most similar using a similarity metric. However, the absence of similar pat- terns between the test and training/validation sets compromises the quality of the RoC and adversely affects the predictive capabilities of these systems. Besides, the choice of which similarity measure to adopt is a complex and ongoing research problem. Consequently, the fol- lowing question arose: “How to conduct the selection phase considering structural changes in terms of trend in the time series, without relying on similarity measures?”. This thesis proposes a new DES approach, Dynamic Ensemble Selection based on Trend Classification (DESTC), which uses trend analysis to select the models to be combined. Trend is the prevailing direc- tion or pattern in data observed over time. DESTC consists of two main phases: the training phase (a), in which a pool of models is evaluated to determine the best ones for each trend class, and the testing phase (b), in which each new instance has its trend assessed, and the top-performing models are selected for prediction. To evaluate the predictive performance of DESTC, two experiments were conducted. In Experiment A, the proposed approach was ap- plied to COVID-19 incidence time series data from eight countries and compared with single and ensemble-based algorithms from the literature. The proposed approach achieved superior forecasting performance and lower computational cost. In Experiment B, DESTC was further evaluated on time series exhibiting distinct characteristics from various phenomena. The results demonstrated that DESTC is a competitive alternative to other Multiple Predictor Systems (MPS). The main limitation of the proposed method is that DESTC tends to have lower predictive performance when the time series lacks a clear trend cycle pattern, making model selection based on trend classification impractical. Moreover, the results presented and dis- cussed in both experiments demonstrate that the proposed method, DESTC, is a competitive alternative to other MPSs found in the literature.
publishDate 2024
dc.date.none.fl_str_mv 2024-08-02
2025-01-21T15:00:08Z
2025-01-21T15:00:08Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SALES, Jair Paulino de. Dynamic ensemble selection forecasting system based on trend classification. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024
https://repositorio.ufpe.br/handle/123456789/59888
identifier_str_mv SALES, Jair Paulino de. Dynamic ensemble selection forecasting system based on trend classification. 2024. Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2024
url https://repositorio.ufpe.br/handle/123456789/59888
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041947453456384