Modelo de rede neural crescente de aprendizagem por reforço
Ano de defesa: | 2016 |
---|---|
Autor(a) principal: | |
Orientador(a): | |
Banca de defesa: | |
Tipo de documento: | Tese |
Tipo de acesso: | Acesso aberto |
Idioma: | por |
Instituição de defesa: |
Universidade Federal de Pernambuco
|
Programa de Pós-Graduação: |
Programa de Pos Graduacao em Ciencia da Computacao
|
Departamento: |
Não Informado pela instituição
|
País: |
Brasil
|
Palavras-chave em Português: | |
Link de acesso: | https://repositorio.ufpe.br/handle/123456789/25491 |
Resumo: | Os algoritmos da Aprendizagem por Reforço (AR) têm sido amplamente utilizados para a construção de agentes autônomos. Inspirada no comportamento da aprendizagem animal, a AR é um paradigma que serve como base para algoritmos que aprendem por tentativa e erro. Apesar da sua popularidade e sua sólida base matemática e garantia teórica de convergência para uma solução ótima, a AR apresenta restrições de aplicação em tarefas em que o espaço de estados é muito grande. Por meio do agrupamento de estados similares é possível reduzir o tamanho do espaço de estados. Uma vez reduzido, o problema pode ser resolvido utilizando os algoritmos tradicionais da AR. A principal questão que se coloca aqui é como efetuar a agregação, de tal modo que, por um lado, se possa obter uma “boa” representação do espaço de estados, e pelo outro lado, o desempenho do modelo não degrade. Este é um dos grandes desafios da AR. Esta tese propõe agrupar estados similares, por meio do uso do mapa auto-organizável de Fritzke, como forma de reduzir o espaço de estados. A maior parte das pesquisas que envolvem o uso de algoritmos que discretizam o espaço de estados busca aprimorar o momento certo para a partição do espaço de estados, onde particionar e quando parar, enquanto os algoritmos AR permanecem inalterados. Esses trabalhos em geral resultam em algoritmos que não convergem em determinados problemas ou que possuem uma capacidade de aprendizagem “fraca”. O presente trabalho contribui mostrando a fragilidade destes algoritmos ao mesmo tempo em que apresenta uma solução eficaz para o problema. Esta tese compara o algoritmo proposto com quatro algoritmos AR chamados: Tile Coding (TC), Temporal Difference Adaptive Vector Quantification (TD-AVQ), Q(λ) com Discretização Uniforme (Q(λ)-DU) e Interpolating Growing Neural Gas Q-learning (IGNG-Q). Os experimentos mostram que o algoritmo proposto foi capaz de encontrar a solução dos cinco ambientes de teste envolvidos. Em comparação com o algoritmo TC, o algoritmo proposto foi capaz de proporcionar uma redução no uso da memória de 88%, 87%, 98% e 97% nos ambientes Continuous Maze, Slow Puddle World, Mountain Car e Acrobot, respectivamente. No teste, o algoritmo proposto foi o único capaz de produzir uma política utilizável nos ambientes Continuous Maze e Slow Puddle World. O presente trabalho também mostra que o algoritmo n-step Temporal Difference with Elegibility Traces (TD(nλ)) é mais indicado para o uso em ambientes discretizados que o Q(λ). O uso do algoritmo proposto com Discretização Uniforme (DU) foi capaz de mostrar convergência em problemas onde o Q(λ) não conseguiu. O produto final desta tese é um algoritmo robusto capaz de encontrar em tempo hábil uma solução para todos os ambientes de teste envolvidos. |
id |
UFPE_a2c7b8e32e826f0ff9676670e35c576d |
---|---|
oai_identifier_str |
oai:repositorio.ufpe.br:123456789/25491 |
network_acronym_str |
UFPE |
network_name_str |
Repositório Institucional da UFPE |
repository_id_str |
|
spelling |
VIEIRA, Davi Carnaúba de Limahttp://lattes.cnpq.br/5682382901541282http://lattes.cnpq.br/3524590211304012ADEODATO, Paulo Jorge Leitão2018-08-09T17:13:59Z2018-08-09T17:13:59Z2016-03-03https://repositorio.ufpe.br/handle/123456789/25491Os algoritmos da Aprendizagem por Reforço (AR) têm sido amplamente utilizados para a construção de agentes autônomos. Inspirada no comportamento da aprendizagem animal, a AR é um paradigma que serve como base para algoritmos que aprendem por tentativa e erro. Apesar da sua popularidade e sua sólida base matemática e garantia teórica de convergência para uma solução ótima, a AR apresenta restrições de aplicação em tarefas em que o espaço de estados é muito grande. Por meio do agrupamento de estados similares é possível reduzir o tamanho do espaço de estados. Uma vez reduzido, o problema pode ser resolvido utilizando os algoritmos tradicionais da AR. A principal questão que se coloca aqui é como efetuar a agregação, de tal modo que, por um lado, se possa obter uma “boa” representação do espaço de estados, e pelo outro lado, o desempenho do modelo não degrade. Este é um dos grandes desafios da AR. Esta tese propõe agrupar estados similares, por meio do uso do mapa auto-organizável de Fritzke, como forma de reduzir o espaço de estados. A maior parte das pesquisas que envolvem o uso de algoritmos que discretizam o espaço de estados busca aprimorar o momento certo para a partição do espaço de estados, onde particionar e quando parar, enquanto os algoritmos AR permanecem inalterados. Esses trabalhos em geral resultam em algoritmos que não convergem em determinados problemas ou que possuem uma capacidade de aprendizagem “fraca”. O presente trabalho contribui mostrando a fragilidade destes algoritmos ao mesmo tempo em que apresenta uma solução eficaz para o problema. Esta tese compara o algoritmo proposto com quatro algoritmos AR chamados: Tile Coding (TC), Temporal Difference Adaptive Vector Quantification (TD-AVQ), Q(λ) com Discretização Uniforme (Q(λ)-DU) e Interpolating Growing Neural Gas Q-learning (IGNG-Q). Os experimentos mostram que o algoritmo proposto foi capaz de encontrar a solução dos cinco ambientes de teste envolvidos. Em comparação com o algoritmo TC, o algoritmo proposto foi capaz de proporcionar uma redução no uso da memória de 88%, 87%, 98% e 97% nos ambientes Continuous Maze, Slow Puddle World, Mountain Car e Acrobot, respectivamente. No teste, o algoritmo proposto foi o único capaz de produzir uma política utilizável nos ambientes Continuous Maze e Slow Puddle World. O presente trabalho também mostra que o algoritmo n-step Temporal Difference with Elegibility Traces (TD(nλ)) é mais indicado para o uso em ambientes discretizados que o Q(λ). O uso do algoritmo proposto com Discretização Uniforme (DU) foi capaz de mostrar convergência em problemas onde o Q(λ) não conseguiu. O produto final desta tese é um algoritmo robusto capaz de encontrar em tempo hábil uma solução para todos os ambientes de teste envolvidos.CAPESReinforcement Learning (RL) algorithms has been widely used for the construction of autonomous agents. Inspired by the behavior of animal learning, RL is a paradigm that serves as basis for algorithms that learn by trial and error. Despite its popularity, solid mathematical foundation and theoretical guarantee of convergence to an optimal solution, RL have applicability constraints on tasks where the state space is too large. By aggregating similar states one can reduce the state space size. Once reduced, the problem can be solved using traditional RL algorithms. The main question that arises here is how to realize the aggregation, so on the one hand, you can get a “good” representation of the state space, and on the other hand, the model performance does not degrade. This is one of the challenges of RL. This thesis proposes aggregation of similar states, through the use of Fritzke’s selforganizing map, in order to reduce the state space. Most research involving the use of algorithms that discretize the state space seek to improve the right time for the partition of the state space, where to partition and when to stop, while the RL algorithms remains unchanged. These works often result in algorithms that do not converge on certain problems or have a “weak” learning capacity. This work contributes showing the fragility of these algorithms while presents an effective solution to the problem. This thesis compares the proposed algorithm with four RL algorithms namely: Tile Coding (TC), Temporal Difference Adaptive Vector Quantization (TD-AVQ), Uniform Discretization (DU) and Interpolating Growing Neural Gas Q-learning (IGNG-Q). The experiments show that the proposed algorithm was able to find the solution on five testbed environments. Compared with TC, the proposed algorithm was able to provide a reduction in memory usage of 88%, 87%, 98% and 97% in the environments Continuous Maze, Slow Puddle World, Mountain Car and Acrobot respectively. In the test, the proposed algorithm was the only capable to found an solution for the environments Continuous Maze and Slow Puddle World. This thesis also shows that the RL algorithm proposed is more suitable for the use in discretized environments than Q(λ). The application of TD(nλ) with DU was able to show convergence in problems where Q(λ) failed. The final product of this thesis is a robust algorithm able to find in time a solution for all specified test environments.porUniversidade Federal de PernambucoPrograma de Pos Graduacao em Ciencia da ComputacaoUFPEBrasilAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessInteligência artificialRedes neuraisDiferença temporalModelo de rede neural crescente de aprendizagem por reforçoinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisdoutoradoreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPETHUMBNAILTESE Davi Carnaíba de Lima Vieira.pdf.jpgTESE Davi Carnaíba de Lima Vieira.pdf.jpgGenerated Thumbnailimage/jpeg1257https://repositorio.ufpe.br/bitstream/123456789/25491/5/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf.jpg51add0f68c977608f9add4d1bfb1a8abMD55ORIGINALTESE Davi Carnaíba de Lima Vieira.pdfTESE Davi Carnaíba de Lima Vieira.pdfapplication/pdf2812278https://repositorio.ufpe.br/bitstream/123456789/25491/1/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf49475e006f9c1cb1a583b085a286ad3fMD51CC-LICENSElicense_rdflicense_rdfapplication/rdf+xml; charset=utf-8811https://repositorio.ufpe.br/bitstream/123456789/25491/2/license_rdfe39d27027a6cc9cb039ad269a5db8e34MD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82311https://repositorio.ufpe.br/bitstream/123456789/25491/3/license.txt4b8a02c7f2818eaf00dcf2260dd5eb08MD53TEXTTESE Davi Carnaíba de Lima Vieira.pdf.txtTESE Davi Carnaíba de Lima Vieira.pdf.txtExtracted texttext/plain256560https://repositorio.ufpe.br/bitstream/123456789/25491/4/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf.txt757b68334f3d87a0a273eaa3e4011791MD54123456789/254912019-10-25 09:10:34.705oai:repositorio.ufpe.br:123456789/25491TGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKClRvZG8gZGVwb3NpdGFudGUgZGUgbWF0ZXJpYWwgbm8gUmVwb3NpdMOzcmlvIEluc3RpdHVjaW9uYWwgKFJJKSBkZXZlIGNvbmNlZGVyLCDDoCBVbml2ZXJzaWRhZGUgRmVkZXJhbCBkZSBQZXJuYW1idWNvIChVRlBFKSwgdW1hIExpY2Vuw6dhIGRlIERpc3RyaWJ1acOnw6NvIE7Do28gRXhjbHVzaXZhIHBhcmEgbWFudGVyIGUgdG9ybmFyIGFjZXNzw612ZWlzIG9zIHNldXMgZG9jdW1lbnRvcywgZW0gZm9ybWF0byBkaWdpdGFsLCBuZXN0ZSByZXBvc2l0w7NyaW8uCgpDb20gYSBjb25jZXNzw6NvIGRlc3RhIGxpY2Vuw6dhIG7Do28gZXhjbHVzaXZhLCBvIGRlcG9zaXRhbnRlIG1hbnTDqW0gdG9kb3Mgb3MgZGlyZWl0b3MgZGUgYXV0b3IuCl9fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fX19fXwoKTGljZW7Dp2EgZGUgRGlzdHJpYnVpw6fDo28gTsOjbyBFeGNsdXNpdmEKCkFvIGNvbmNvcmRhciBjb20gZXN0YSBsaWNlbsOnYSBlIGFjZWl0w6EtbGEsIHZvY8OqIChhdXRvciBvdSBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMpOgoKYSkgRGVjbGFyYSBxdWUgY29uaGVjZSBhIHBvbMOtdGljYSBkZSBjb3B5cmlnaHQgZGEgZWRpdG9yYSBkbyBzZXUgZG9jdW1lbnRvOwpiKSBEZWNsYXJhIHF1ZSBjb25oZWNlIGUgYWNlaXRhIGFzIERpcmV0cml6ZXMgcGFyYSBvIFJlcG9zaXTDs3JpbyBJbnN0aXR1Y2lvbmFsIGRhIFVGUEU7CmMpIENvbmNlZGUgw6AgVUZQRSBvIGRpcmVpdG8gbsOjbyBleGNsdXNpdm8gZGUgYXJxdWl2YXIsIHJlcHJvZHV6aXIsIGNvbnZlcnRlciAoY29tbyBkZWZpbmlkbyBhIHNlZ3VpciksIGNvbXVuaWNhciBlL291IGRpc3RyaWJ1aXIsIG5vIFJJLCBvIGRvY3VtZW50byBlbnRyZWd1ZSAoaW5jbHVpbmRvIG8gcmVzdW1vL2Fic3RyYWN0KSBlbSBmb3JtYXRvIGRpZ2l0YWwgb3UgcG9yIG91dHJvIG1laW87CmQpIERlY2xhcmEgcXVlIGF1dG9yaXphIGEgVUZQRSBhIGFycXVpdmFyIG1haXMgZGUgdW1hIGPDs3BpYSBkZXN0ZSBkb2N1bWVudG8gZSBjb252ZXJ0w6otbG8sIHNlbSBhbHRlcmFyIG8gc2V1IGNvbnRlw7pkbywgcGFyYSBxdWFscXVlciBmb3JtYXRvIGRlIGZpY2hlaXJvLCBtZWlvIG91IHN1cG9ydGUsIHBhcmEgZWZlaXRvcyBkZSBzZWd1cmFuw6dhLCBwcmVzZXJ2YcOnw6NvIChiYWNrdXApIGUgYWNlc3NvOwplKSBEZWNsYXJhIHF1ZSBvIGRvY3VtZW50byBzdWJtZXRpZG8gw6kgbyBzZXUgdHJhYmFsaG8gb3JpZ2luYWwgZSBxdWUgZGV0w6ltIG8gZGlyZWl0byBkZSBjb25jZWRlciBhIHRlcmNlaXJvcyBvcyBkaXJlaXRvcyBjb250aWRvcyBuZXN0YSBsaWNlbsOnYS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBhIGVudHJlZ2EgZG8gZG9jdW1lbnRvIG7Do28gaW5mcmluZ2Ugb3MgZGlyZWl0b3MgZGUgb3V0cmEgcGVzc29hIG91IGVudGlkYWRlOwpmKSBEZWNsYXJhIHF1ZSwgbm8gY2FzbyBkbyBkb2N1bWVudG8gc3VibWV0aWRvIGNvbnRlciBtYXRlcmlhbCBkbyBxdWFsIG7Do28gZGV0w6ltIG9zIGRpcmVpdG9zIGRlCmF1dG9yLCBvYnRldmUgYSBhdXRvcml6YcOnw6NvIGlycmVzdHJpdGEgZG8gcmVzcGVjdGl2byBkZXRlbnRvciBkZXNzZXMgZGlyZWl0b3MgcGFyYSBjZWRlciDDoApVRlBFIG9zIGRpcmVpdG9zIHJlcXVlcmlkb3MgcG9yIGVzdGEgTGljZW7Dp2EgZSBhdXRvcml6YXIgYSB1bml2ZXJzaWRhZGUgYSB1dGlsaXrDoS1sb3MgbGVnYWxtZW50ZS4gRGVjbGFyYSB0YW1iw6ltIHF1ZSBlc3NlIG1hdGVyaWFsIGN1am9zIGRpcmVpdG9zIHPDo28gZGUgdGVyY2Vpcm9zIGVzdMOhIGNsYXJhbWVudGUgaWRlbnRpZmljYWRvIGUgcmVjb25oZWNpZG8gbm8gdGV4dG8gb3UgY29udGXDumRvIGRvIGRvY3VtZW50byBlbnRyZWd1ZTsKZykgU2UgbyBkb2N1bWVudG8gZW50cmVndWUgw6kgYmFzZWFkbyBlbSB0cmFiYWxobyBmaW5hbmNpYWRvIG91IGFwb2lhZG8gcG9yIG91dHJhIGluc3RpdHVpw6fDo28gcXVlIG7Do28gYSBVRlBFLMKgZGVjbGFyYSBxdWUgY3VtcHJpdSBxdWFpc3F1ZXIgb2JyaWdhw6fDtWVzIGV4aWdpZGFzIHBlbG8gcmVzcGVjdGl2byBjb250cmF0byBvdSBhY29yZG8uCgpBIFVGUEUgaWRlbnRpZmljYXLDoSBjbGFyYW1lbnRlIG8ocykgbm9tZShzKSBkbyhzKSBhdXRvciAoZXMpIGRvcyBkaXJlaXRvcyBkbyBkb2N1bWVudG8gZW50cmVndWUgZSBuw6NvIGZhcsOhIHF1YWxxdWVyIGFsdGVyYcOnw6NvLCBwYXJhIGFsw6ltIGRvIHByZXZpc3RvIG5hIGFsw61uZWEgYykuCg==Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T12:10:34Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
dc.title.pt_BR.fl_str_mv |
Modelo de rede neural crescente de aprendizagem por reforço |
title |
Modelo de rede neural crescente de aprendizagem por reforço |
spellingShingle |
Modelo de rede neural crescente de aprendizagem por reforço VIEIRA, Davi Carnaúba de Lima Inteligência artificial Redes neurais Diferença temporal |
title_short |
Modelo de rede neural crescente de aprendizagem por reforço |
title_full |
Modelo de rede neural crescente de aprendizagem por reforço |
title_fullStr |
Modelo de rede neural crescente de aprendizagem por reforço |
title_full_unstemmed |
Modelo de rede neural crescente de aprendizagem por reforço |
title_sort |
Modelo de rede neural crescente de aprendizagem por reforço |
author |
VIEIRA, Davi Carnaúba de Lima |
author_facet |
VIEIRA, Davi Carnaúba de Lima |
author_role |
author |
dc.contributor.authorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/5682382901541282 |
dc.contributor.advisorLattes.pt_BR.fl_str_mv |
http://lattes.cnpq.br/3524590211304012 |
dc.contributor.author.fl_str_mv |
VIEIRA, Davi Carnaúba de Lima |
dc.contributor.advisor1.fl_str_mv |
ADEODATO, Paulo Jorge Leitão |
contributor_str_mv |
ADEODATO, Paulo Jorge Leitão |
dc.subject.por.fl_str_mv |
Inteligência artificial Redes neurais Diferença temporal |
topic |
Inteligência artificial Redes neurais Diferença temporal |
description |
Os algoritmos da Aprendizagem por Reforço (AR) têm sido amplamente utilizados para a construção de agentes autônomos. Inspirada no comportamento da aprendizagem animal, a AR é um paradigma que serve como base para algoritmos que aprendem por tentativa e erro. Apesar da sua popularidade e sua sólida base matemática e garantia teórica de convergência para uma solução ótima, a AR apresenta restrições de aplicação em tarefas em que o espaço de estados é muito grande. Por meio do agrupamento de estados similares é possível reduzir o tamanho do espaço de estados. Uma vez reduzido, o problema pode ser resolvido utilizando os algoritmos tradicionais da AR. A principal questão que se coloca aqui é como efetuar a agregação, de tal modo que, por um lado, se possa obter uma “boa” representação do espaço de estados, e pelo outro lado, o desempenho do modelo não degrade. Este é um dos grandes desafios da AR. Esta tese propõe agrupar estados similares, por meio do uso do mapa auto-organizável de Fritzke, como forma de reduzir o espaço de estados. A maior parte das pesquisas que envolvem o uso de algoritmos que discretizam o espaço de estados busca aprimorar o momento certo para a partição do espaço de estados, onde particionar e quando parar, enquanto os algoritmos AR permanecem inalterados. Esses trabalhos em geral resultam em algoritmos que não convergem em determinados problemas ou que possuem uma capacidade de aprendizagem “fraca”. O presente trabalho contribui mostrando a fragilidade destes algoritmos ao mesmo tempo em que apresenta uma solução eficaz para o problema. Esta tese compara o algoritmo proposto com quatro algoritmos AR chamados: Tile Coding (TC), Temporal Difference Adaptive Vector Quantification (TD-AVQ), Q(λ) com Discretização Uniforme (Q(λ)-DU) e Interpolating Growing Neural Gas Q-learning (IGNG-Q). Os experimentos mostram que o algoritmo proposto foi capaz de encontrar a solução dos cinco ambientes de teste envolvidos. Em comparação com o algoritmo TC, o algoritmo proposto foi capaz de proporcionar uma redução no uso da memória de 88%, 87%, 98% e 97% nos ambientes Continuous Maze, Slow Puddle World, Mountain Car e Acrobot, respectivamente. No teste, o algoritmo proposto foi o único capaz de produzir uma política utilizável nos ambientes Continuous Maze e Slow Puddle World. O presente trabalho também mostra que o algoritmo n-step Temporal Difference with Elegibility Traces (TD(nλ)) é mais indicado para o uso em ambientes discretizados que o Q(λ). O uso do algoritmo proposto com Discretização Uniforme (DU) foi capaz de mostrar convergência em problemas onde o Q(λ) não conseguiu. O produto final desta tese é um algoritmo robusto capaz de encontrar em tempo hábil uma solução para todos os ambientes de teste envolvidos. |
publishDate |
2016 |
dc.date.issued.fl_str_mv |
2016-03-03 |
dc.date.accessioned.fl_str_mv |
2018-08-09T17:13:59Z |
dc.date.available.fl_str_mv |
2018-08-09T17:13:59Z |
dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
format |
doctoralThesis |
status_str |
publishedVersion |
dc.identifier.uri.fl_str_mv |
https://repositorio.ufpe.br/handle/123456789/25491 |
url |
https://repositorio.ufpe.br/handle/123456789/25491 |
dc.language.iso.fl_str_mv |
por |
language |
por |
dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
eu_rights_str_mv |
openAccess |
dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.publisher.program.fl_str_mv |
Programa de Pos Graduacao em Ciencia da Computacao |
dc.publisher.initials.fl_str_mv |
UFPE |
dc.publisher.country.fl_str_mv |
Brasil |
publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
instname_str |
Universidade Federal de Pernambuco (UFPE) |
instacron_str |
UFPE |
institution |
UFPE |
reponame_str |
Repositório Institucional da UFPE |
collection |
Repositório Institucional da UFPE |
bitstream.url.fl_str_mv |
https://repositorio.ufpe.br/bitstream/123456789/25491/5/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf.jpg https://repositorio.ufpe.br/bitstream/123456789/25491/1/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf https://repositorio.ufpe.br/bitstream/123456789/25491/2/license_rdf https://repositorio.ufpe.br/bitstream/123456789/25491/3/license.txt https://repositorio.ufpe.br/bitstream/123456789/25491/4/TESE%20Davi%20Carna%c3%adba%20de%20Lima%20Vieira.pdf.txt |
bitstream.checksum.fl_str_mv |
51add0f68c977608f9add4d1bfb1a8ab 49475e006f9c1cb1a583b085a286ad3f e39d27027a6cc9cb039ad269a5db8e34 4b8a02c7f2818eaf00dcf2260dd5eb08 757b68334f3d87a0a273eaa3e4011791 |
bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 MD5 MD5 MD5 |
repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
repository.mail.fl_str_mv |
attena@ufpe.br |
_version_ |
1802311082800316416 |