Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados
| Ano de defesa: | 2013 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal de Pernambuco
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/12402 |
Resumo: | T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao. |
| id |
UFPE_b01aedf1052018314f5dced9a27d3c3c |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/12402 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionadosAprendizagem de maquinaAprendizado supervisionadoSeleção de protótipos,Geração de protótiposRedução de instânciasvizinho mais próximoT´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao.Universidade Federal de PernambucoCavalcanti, George Darmiton da Cunha Pereira, Luciano de Santana2015-03-13T13:10:24Z2015-03-13T13:10:24Z2013-07-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfPEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013..https://repositorio.ufpe.br/handle/123456789/12402porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T20:17:57Zoai:repositorio.ufpe.br:123456789/12402Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T20:17:57Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| title |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| spellingShingle |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados Pereira, Luciano de Santana Aprendizagem de maquina Aprendizado supervisionado Seleção de protótipos, Geração de protótipos Redução de instâncias vizinho mais próximo |
| title_short |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| title_full |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| title_fullStr |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| title_full_unstemmed |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| title_sort |
Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados |
| author |
Pereira, Luciano de Santana |
| author_facet |
Pereira, Luciano de Santana |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Cavalcanti, George Darmiton da Cunha |
| dc.contributor.author.fl_str_mv |
Pereira, Luciano de Santana |
| dc.subject.por.fl_str_mv |
Aprendizagem de maquina Aprendizado supervisionado Seleção de protótipos, Geração de protótipos Redução de instâncias vizinho mais próximo |
| topic |
Aprendizagem de maquina Aprendizado supervisionado Seleção de protótipos, Geração de protótipos Redução de instâncias vizinho mais próximo |
| description |
T´ecnicas de aprendizagem de m´aquina baseadas em instˆancias s˜ao utilizadas em v´arias aplicac¸ ˜oes, como, por exemplo, reconhecimento de faces, voz e digitais, na medicina para auxiliar m´edicos na detecc¸ ˜ao de neoplasias, entre outras. Geralmente, essas t´ecnicas s˜ao submetidas a grandes conjuntos de dados, fazendo com que haja necessidade de grande espac¸o em mem´oria para processamento e armazenamento, al´em do elevado custo computacional para a classificac¸ ˜ao. Com o objetivo de minimizar esses problemas, as t´ecnicas de reduc¸ ˜ao de instˆancias buscam reduzir o tamanho do conjunto de dados, escolhendo ou produzindo elementos que consigam represent´a-lo, reduzindo a necessidade de mem´oria para o armazenamento do conjunto de dados, o custo computacional e minimizando a taxa de erro. Existem, atualmente, dois ramos da pesquisa que buscam a reduc¸ ˜ao de instˆancias: a selec¸ ˜ao de instˆancias, que faz a reduc¸ ˜ao escolhendo algumas instˆancias representantes de todo o conjunto de treinamento e as t´ecnicas de gerac¸ ˜ao de prot´otipos que buscam a reduc¸ ˜ao de instˆancias, produzindo novos prot´otipos, a partir de v´arias heur´ısticas, que ir˜ao representar todo o conjunto de treinamento. Esse processo de gerac¸ ˜ao ´e mais demorado que o processo de selec¸ ˜ao. Por´em, observa-se na literatura que as t´ecnicas de gerac¸ ˜ao apresentam melhores resultados que as t´ecnicas de selec¸ ˜ao. A proposta deste trabalho ´e investigar se as t´ecnicas de selec¸ ˜ao podem obter resultados semelhantes `as t´ecnicas de gerac¸ ˜ao. O resultado obtido neste estudo mostra que as t´ecnicas de selec¸ ˜ao existentes podem obter taxas equivalentes `as t´ecnicas de gerac¸ ˜ao na maioria das bases utilizadas nos experimentos, existindo algumas excec¸ ˜oes em que as t´ecnicas de gerac¸ ˜ao obtiveram melhores resultados. Podemos verificar que, na maioria dos casos (83,3%) das bases testadas, os prot´otipos gerados tinham instˆancias muito pr´oximas, no conjunto de treinamento, que poderiam substitu´ı-los, sem a necessidade de gerac¸ ˜ao de prot´otipos, que ´e um processo mais custoso que a selec¸ ˜ao de prot´otipos. Podemos concluir que ´e poss´ıvel desenvolver t´ecnicas de selec¸ ˜ao, que apresentem taxas de erro estatisticamente iguais `as t´ecnicas de gerac¸ ˜ao. |
| publishDate |
2013 |
| dc.date.none.fl_str_mv |
2013-07-17 2015-03-13T13:10:24Z 2015-03-13T13:10:24Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
PEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.. https://repositorio.ufpe.br/handle/123456789/12402 |
| identifier_str_mv |
PEREIRA, Luciano de Santana. Metodologia para avaliar técnicas de redução de protótipos: protótipos gerados versus protótipos selecionados. Recife, 2013. 75 f. Dissertação (mestrado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2013.. |
| url |
https://repositorio.ufpe.br/handle/123456789/12402 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041848910381056 |