Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas

Detalhes bibliográficos
Ano de defesa: 2008
Autor(a) principal: de Santana Pereira, Cristiano
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/1544
Resumo: Seleção de protótipos é uma técnica de aprendizagem de máquina cujo objetivo é a escolha ou produção de instâncias de dados que consigam a melhor representação para os dados do problema realçando as fronteiras de decisão e mantendo a separação entre as classes. A idéia é reduzir a quantidade de dados e ainda assim obter um conjunto de protótipos que minimize o erro de classificação. As estratégias baseadas em protótipos têm sido bastante utilizadas em aplicações reais nos mais diversos domínios obtendo bons resultados. A proposta deste trabalho foi investigar técnicas de seleção de protótipos baseadas em auto-geração e mistura de gaussianas comparando com algumas técnicas clássicas. Como resultado deste estudo, um modelo híbrido combinando estas duas estratégias foi proposto. Este modelo híbrido supera algumas dificuldades destas técnicas quando analisadas isoladamente, pois eles combinam a vantagem da ausência de parâmetros da auto-geração com a maior capacidade de ajuste nas fronteiras de decisão da mistura de gaussianas. O novo modelo foi avaliado com diversos problemas considerados benchmarks da área de aprendizagem de máquina apresentando desempenho superior na maioria deles quando comparado com as técnicas de auto-geração e mistura de gaussianas analisadas. A segunda parte deste trabalho apresenta um estudo da aplicação da nova estratégia híbrida ao problema específico de segmentação de caracteres. Curvas ROC foram utilizadas para avaliar o desempenho e mais uma vez o modelo híbrido se mostrou superior
id UFPE_be6f76c13b8bc0282641f832fe06f7cd
oai_identifier_str oai:repositorio.ufpe.br:123456789/1544
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianasAprendizagem de máquinaseleção de protótiposauto-geração de protótiposquantização vetorialmistura de gaussianasSeleção de protótipos é uma técnica de aprendizagem de máquina cujo objetivo é a escolha ou produção de instâncias de dados que consigam a melhor representação para os dados do problema realçando as fronteiras de decisão e mantendo a separação entre as classes. A idéia é reduzir a quantidade de dados e ainda assim obter um conjunto de protótipos que minimize o erro de classificação. As estratégias baseadas em protótipos têm sido bastante utilizadas em aplicações reais nos mais diversos domínios obtendo bons resultados. A proposta deste trabalho foi investigar técnicas de seleção de protótipos baseadas em auto-geração e mistura de gaussianas comparando com algumas técnicas clássicas. Como resultado deste estudo, um modelo híbrido combinando estas duas estratégias foi proposto. Este modelo híbrido supera algumas dificuldades destas técnicas quando analisadas isoladamente, pois eles combinam a vantagem da ausência de parâmetros da auto-geração com a maior capacidade de ajuste nas fronteiras de decisão da mistura de gaussianas. O novo modelo foi avaliado com diversos problemas considerados benchmarks da área de aprendizagem de máquina apresentando desempenho superior na maioria deles quando comparado com as técnicas de auto-geração e mistura de gaussianas analisadas. A segunda parte deste trabalho apresenta um estudo da aplicação da nova estratégia híbrida ao problema específico de segmentação de caracteres. Curvas ROC foram utilizadas para avaliar o desempenho e mais uma vez o modelo híbrido se mostrou superiorUniversidade Federal de PernambucoDarmiton da Cunha Cavalcanti, George de Santana Pereira, Cristiano2014-06-12T15:51:05Z2014-06-12T15:51:05Z2008-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfde Santana Pereira, Cristiano; Darmiton da Cunha Cavalcanti, George. Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.https://repositorio.ufpe.br/handle/123456789/1544porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:09:18Zoai:repositorio.ufpe.br:123456789/1544Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:09:18Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
title Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
spellingShingle Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
de Santana Pereira, Cristiano
Aprendizagem de máquina
seleção de protótipos
auto-geração de protótipos
quantização vetorial
mistura de gaussianas
title_short Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
title_full Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
title_fullStr Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
title_full_unstemmed Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
title_sort Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas
author de Santana Pereira, Cristiano
author_facet de Santana Pereira, Cristiano
author_role author
dc.contributor.none.fl_str_mv Darmiton da Cunha Cavalcanti, George
dc.contributor.author.fl_str_mv de Santana Pereira, Cristiano
dc.subject.por.fl_str_mv Aprendizagem de máquina
seleção de protótipos
auto-geração de protótipos
quantização vetorial
mistura de gaussianas
topic Aprendizagem de máquina
seleção de protótipos
auto-geração de protótipos
quantização vetorial
mistura de gaussianas
description Seleção de protótipos é uma técnica de aprendizagem de máquina cujo objetivo é a escolha ou produção de instâncias de dados que consigam a melhor representação para os dados do problema realçando as fronteiras de decisão e mantendo a separação entre as classes. A idéia é reduzir a quantidade de dados e ainda assim obter um conjunto de protótipos que minimize o erro de classificação. As estratégias baseadas em protótipos têm sido bastante utilizadas em aplicações reais nos mais diversos domínios obtendo bons resultados. A proposta deste trabalho foi investigar técnicas de seleção de protótipos baseadas em auto-geração e mistura de gaussianas comparando com algumas técnicas clássicas. Como resultado deste estudo, um modelo híbrido combinando estas duas estratégias foi proposto. Este modelo híbrido supera algumas dificuldades destas técnicas quando analisadas isoladamente, pois eles combinam a vantagem da ausência de parâmetros da auto-geração com a maior capacidade de ajuste nas fronteiras de decisão da mistura de gaussianas. O novo modelo foi avaliado com diversos problemas considerados benchmarks da área de aprendizagem de máquina apresentando desempenho superior na maioria deles quando comparado com as técnicas de auto-geração e mistura de gaussianas analisadas. A segunda parte deste trabalho apresenta um estudo da aplicação da nova estratégia híbrida ao problema específico de segmentação de caracteres. Curvas ROC foram utilizadas para avaliar o desempenho e mais uma vez o modelo híbrido se mostrou superior
publishDate 2008
dc.date.none.fl_str_mv 2008-01-31
2014-06-12T15:51:05Z
2014-06-12T15:51:05Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv de Santana Pereira, Cristiano; Darmiton da Cunha Cavalcanti, George. Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.
https://repositorio.ufpe.br/handle/123456789/1544
identifier_str_mv de Santana Pereira, Cristiano; Darmiton da Cunha Cavalcanti, George. Seleção de protótipos: combinando auto-geração de protótipos e mistura de gaussianas. 2008. Dissertação (Mestrado). Programa de Pós-Graduação em Ciência da Computação, Universidade Federal de Pernambuco, Recife, 2008.
url https://repositorio.ufpe.br/handle/123456789/1544
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041858910650368