Hybrid data-driven maintenance policies with sequential pattern mining support

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: PAIVA, Rafael Gomes Nobrega
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/62430
Resumo: The management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance.
id UFPE_b4983040da29acdfc7cc8cd333a3027f
oai_identifier_str oai:repositorio.ufpe.br:123456789/62430
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Hybrid data-driven maintenance policies with sequential pattern mining supportManutençãoMineração de dadosPolíticas híbridasMineração de padrões sequenciaisCentro de usinagemThe management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance.A gestão de Operações e Manutenção (O&M) em sistemas industriais evoluiu significativamente com os avanços tecnológicos, permitindo a coleta de dados em tempo real por meio de sensores embarcados. Essas inovações oferecem oportunidades para prever falhas e otimizar políticas de manutenção. No entanto, ainda existem desafios, especialmente na interpretação de dados de eventos discretos e na abordagem de questões como falsos negativos, indução de defeitos e impedimentos à manutenção. Esta pesquisa apresenta um framework inovador que integra a Mineração de Padrões Sequenciais (SPM) com metodologias de melhoria contínua, como Descoberta de Conhecimento em Bancos de Dados (KDD) e o ciclo Plan-Do-Check-Act (PDCA). O framework suporta o desenvolvimento de políticas híbridas de manutenção para sistemas industriais complexos, abordando tanto desafios operacionais quanto gerenciais. As principais contribuições incluem dois modelos inovadores adaptados a subsistemas distintos em um centro de usinagem: para o sistema de lubrificação, foi projetada uma política híbrida oportunística para mitigar interrupções frequentes e o desgaste de ferramentas causado por falhas de lubrificação, demonstrando reduções de custos e melhorias operacionais; para o subsistema do spindle, foi desenvolvida uma política híbrida de manutenção que incorpora um modelo de degradação em três estágios, impedimentos externos à manutenção e cenários de indução de defeitos, oferecendo uma solução abrangente para a otimização da manutenção. Este estudo avança o estado da arte ao integrar conceitos de manutenção anteriormente isolados em políticas híbridas coesas, apoiadas por análises numéricas que revelam uma otimização significativa de custos em comparação com métodos tradicionais. As contribuições práticas incluem a identificação de limites críticos de custos, diretrizes para a frequência de inspeções e estratégias para minimizar a indução de defeitos. Além disso, a pesquisa destaca os benefícios econômicos e ambientais da manutenção proativa, alinhando-se aos objetivos de sustentabilidade e responsabilidade social corporativa. Ao conectar inovações teóricas com aplicações práticas, esta tese fornece ferramentas robustas para melhorar a eficiência, confiabilidade e tomada de decisão na manutenção industrial.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoCAVALCANTE, Cristiano Alexandre VirginioDO, Phuchttp://lattes.cnpq.br/3281595546229786http://lattes.cnpq.br/6312739422908628PAIVA, Rafael Gomes Nobrega2025-04-22T15:01:25Z2025-04-22T15:01:25Z2025-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/62430engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-04-23T05:29:06Zoai:repositorio.ufpe.br:123456789/62430Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-04-23T05:29:06Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Hybrid data-driven maintenance policies with sequential pattern mining support
title Hybrid data-driven maintenance policies with sequential pattern mining support
spellingShingle Hybrid data-driven maintenance policies with sequential pattern mining support
PAIVA, Rafael Gomes Nobrega
Manutenção
Mineração de dados
Políticas híbridas
Mineração de padrões sequenciais
Centro de usinagem
title_short Hybrid data-driven maintenance policies with sequential pattern mining support
title_full Hybrid data-driven maintenance policies with sequential pattern mining support
title_fullStr Hybrid data-driven maintenance policies with sequential pattern mining support
title_full_unstemmed Hybrid data-driven maintenance policies with sequential pattern mining support
title_sort Hybrid data-driven maintenance policies with sequential pattern mining support
author PAIVA, Rafael Gomes Nobrega
author_facet PAIVA, Rafael Gomes Nobrega
author_role author
dc.contributor.none.fl_str_mv CAVALCANTE, Cristiano Alexandre Virginio
DO, Phuc
http://lattes.cnpq.br/3281595546229786
http://lattes.cnpq.br/6312739422908628
dc.contributor.author.fl_str_mv PAIVA, Rafael Gomes Nobrega
dc.subject.por.fl_str_mv Manutenção
Mineração de dados
Políticas híbridas
Mineração de padrões sequenciais
Centro de usinagem
topic Manutenção
Mineração de dados
Políticas híbridas
Mineração de padrões sequenciais
Centro de usinagem
description The management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance.
publishDate 2025
dc.date.none.fl_str_mv 2025-04-22T15:01:25Z
2025-04-22T15:01:25Z
2025-02-20
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv PAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025.
https://repositorio.ufpe.br/handle/123456789/62430
identifier_str_mv PAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025.
url https://repositorio.ufpe.br/handle/123456789/62430
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Engenharia de Producao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042096405774336