Hybrid data-driven maintenance policies with sequential pattern mining support
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso embargado |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/62430 |
Resumo: | The management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance. |
| id |
UFPE_b4983040da29acdfc7cc8cd333a3027f |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/62430 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Hybrid data-driven maintenance policies with sequential pattern mining supportManutençãoMineração de dadosPolíticas híbridasMineração de padrões sequenciaisCentro de usinagemThe management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance.A gestão de Operações e Manutenção (O&M) em sistemas industriais evoluiu significativamente com os avanços tecnológicos, permitindo a coleta de dados em tempo real por meio de sensores embarcados. Essas inovações oferecem oportunidades para prever falhas e otimizar políticas de manutenção. No entanto, ainda existem desafios, especialmente na interpretação de dados de eventos discretos e na abordagem de questões como falsos negativos, indução de defeitos e impedimentos à manutenção. Esta pesquisa apresenta um framework inovador que integra a Mineração de Padrões Sequenciais (SPM) com metodologias de melhoria contínua, como Descoberta de Conhecimento em Bancos de Dados (KDD) e o ciclo Plan-Do-Check-Act (PDCA). O framework suporta o desenvolvimento de políticas híbridas de manutenção para sistemas industriais complexos, abordando tanto desafios operacionais quanto gerenciais. As principais contribuições incluem dois modelos inovadores adaptados a subsistemas distintos em um centro de usinagem: para o sistema de lubrificação, foi projetada uma política híbrida oportunística para mitigar interrupções frequentes e o desgaste de ferramentas causado por falhas de lubrificação, demonstrando reduções de custos e melhorias operacionais; para o subsistema do spindle, foi desenvolvida uma política híbrida de manutenção que incorpora um modelo de degradação em três estágios, impedimentos externos à manutenção e cenários de indução de defeitos, oferecendo uma solução abrangente para a otimização da manutenção. Este estudo avança o estado da arte ao integrar conceitos de manutenção anteriormente isolados em políticas híbridas coesas, apoiadas por análises numéricas que revelam uma otimização significativa de custos em comparação com métodos tradicionais. As contribuições práticas incluem a identificação de limites críticos de custos, diretrizes para a frequência de inspeções e estratégias para minimizar a indução de defeitos. Além disso, a pesquisa destaca os benefícios econômicos e ambientais da manutenção proativa, alinhando-se aos objetivos de sustentabilidade e responsabilidade social corporativa. Ao conectar inovações teóricas com aplicações práticas, esta tese fornece ferramentas robustas para melhorar a eficiência, confiabilidade e tomada de decisão na manutenção industrial.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Engenharia de ProducaoCAVALCANTE, Cristiano Alexandre VirginioDO, Phuchttp://lattes.cnpq.br/3281595546229786http://lattes.cnpq.br/6312739422908628PAIVA, Rafael Gomes Nobrega2025-04-22T15:01:25Z2025-04-22T15:01:25Z2025-02-20info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfPAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/62430engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-04-23T05:29:06Zoai:repositorio.ufpe.br:123456789/62430Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-04-23T05:29:06Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| title |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| spellingShingle |
Hybrid data-driven maintenance policies with sequential pattern mining support PAIVA, Rafael Gomes Nobrega Manutenção Mineração de dados Políticas híbridas Mineração de padrões sequenciais Centro de usinagem |
| title_short |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| title_full |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| title_fullStr |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| title_full_unstemmed |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| title_sort |
Hybrid data-driven maintenance policies with sequential pattern mining support |
| author |
PAIVA, Rafael Gomes Nobrega |
| author_facet |
PAIVA, Rafael Gomes Nobrega |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
CAVALCANTE, Cristiano Alexandre Virginio DO, Phuc http://lattes.cnpq.br/3281595546229786 http://lattes.cnpq.br/6312739422908628 |
| dc.contributor.author.fl_str_mv |
PAIVA, Rafael Gomes Nobrega |
| dc.subject.por.fl_str_mv |
Manutenção Mineração de dados Políticas híbridas Mineração de padrões sequenciais Centro de usinagem |
| topic |
Manutenção Mineração de dados Políticas híbridas Mineração de padrões sequenciais Centro de usinagem |
| description |
The management of Operations and Maintenance (O&M) in industrial systems has evolved significantly with technological advancements, enabling real-time data collection through embedded sensors. These innovations provide opportunities for predicting failures and optimizing maintenance policies. However, challenges remain, particularly in interpreting discrete event data and addressing issues such as false negatives, defect induction, and maintenance impediments. This research introduces a novel framework that integrates Sequential Pattern Mining (SPM) with continuous improvement methodologies like Knowledge Discovery in Databases (KDD) and the Plan-Do-Check-Act (PDCA) cycle. The framework supports the development of hybrid maintenance policies for complex industrial systems by addressing both operational and managerial challenges. Key contributions include two innovative models tailored to distinct subsystems in a machining center: for the lubrication system, an opportunistic hybrid policy was designed to mitigate frequent interruptions and tool wear caused by lubrication failures, demonstrating cost reductions and operational improvements; for the spindle subsystem, a hybrid maintenance policy incorporating a three- stage degradation model, external maintenance impediments, and defect induction scenarios was developed, offering a comprehensive solution for maintenance optimization. This study advances the state of the art by integrating previously isolated maintenance concepts into cohesive hybrid policies, supported by numerical analyses that reveal significant cost optimization compared to traditional methods. Practical contributions include the identification of critical cost thresholds, guidelines for inspection frequency, and strategies to minimize defect induction. Additionally, the research highlights the economic and environmental benefits of proactive maintenance, aligning with sustainability goals and corporate social responsibility objectives. By bridging theoretical innovations with practical applications, this thesis provides robust tools for improving efficiency, reliability, and decision-making in industrial maintenance. |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-04-22T15:01:25Z 2025-04-22T15:01:25Z 2025-02-20 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
PAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025. https://repositorio.ufpe.br/handle/123456789/62430 |
| identifier_str_mv |
PAIVA, Rafael Gomes Nobrega. Hybrid data-driven maintenance policies with sequential pattern mining support. 2025. Tese (Doutorado em Engenharia de Produção) – Universidade Federal de Pernambuco, Recife, 2025. |
| url |
https://repositorio.ufpe.br/handle/123456789/62430 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Engenharia de Producao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042096405774336 |