A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: MATTOS, Juliana Barcellos
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/44957
Resumo: A variety of works in the literature strive to uncover the factors associated with survival behaviour. However, the computational tools to provide such information are global models designed to predict if or when a (survival) event will occur. When addressing the problem of explaining differences in survival behaviour, those approaches rely on (assumptions of) predictive features followed by risk stratification. In other words, they lack the ability to discover local exceptionalities in the data and provide new information on factors related to survival. In this work, we aim at providing a computational tool to identify the different (unusual) survival responses that may occur in a population of individuals and provide straightforward information about the circumstances related to such responses. We approach such a problem from the perspective of supervised descriptive pattern mining to discover local patterns associated with different survival behaviours. Hence, we introduce an Exceptional Model Mining (EMM) framework to provide straightforward characterisations of subgroups presenting unusual survival models, given by the Kaplan-Meier estimates. In contrast to the greedy search heuristics prevalent among EMM approaches, we employ stochastic optimisation and introduce the first approach in the literature to explore the Ant-Colony Optimisation (ACO) meta-heuristics for the subgroup search. Thus, we tackle the problem of subgroup redundancy to provide a set of exceptional subgroups that are diverse in their descriptions, coverages and survival models. We conducted experiments on fourteen real-world data sets to assess the performance of our approach. In the results, we show that the framework presented is capable of discovering representative patterns with accurate unusual models and straightforward representations. Moreover, the discovered subgroups potentially capture survival behaviours existent in the data. The approach successfully tackles the problem of subgroup redundancy, providing a set of diverse (unique) exceptional (survival) subgroups. Our framework outperforms the other existent approaches to provide characterisations over unusual survival behaviours regarding the descriptive aspect of its results and diversity of its findings.
id UFPE_df133dbcaefcf16b80008b72e7981b44
oai_identifier_str oai:repositorio.ufpe.br:123456789/44957
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviourInteligência computacionalMineração de modelosA variety of works in the literature strive to uncover the factors associated with survival behaviour. However, the computational tools to provide such information are global models designed to predict if or when a (survival) event will occur. When addressing the problem of explaining differences in survival behaviour, those approaches rely on (assumptions of) predictive features followed by risk stratification. In other words, they lack the ability to discover local exceptionalities in the data and provide new information on factors related to survival. In this work, we aim at providing a computational tool to identify the different (unusual) survival responses that may occur in a population of individuals and provide straightforward information about the circumstances related to such responses. We approach such a problem from the perspective of supervised descriptive pattern mining to discover local patterns associated with different survival behaviours. Hence, we introduce an Exceptional Model Mining (EMM) framework to provide straightforward characterisations of subgroups presenting unusual survival models, given by the Kaplan-Meier estimates. In contrast to the greedy search heuristics prevalent among EMM approaches, we employ stochastic optimisation and introduce the first approach in the literature to explore the Ant-Colony Optimisation (ACO) meta-heuristics for the subgroup search. Thus, we tackle the problem of subgroup redundancy to provide a set of exceptional subgroups that are diverse in their descriptions, coverages and survival models. We conducted experiments on fourteen real-world data sets to assess the performance of our approach. In the results, we show that the framework presented is capable of discovering representative patterns with accurate unusual models and straightforward representations. Moreover, the discovered subgroups potentially capture survival behaviours existent in the data. The approach successfully tackles the problem of subgroup redundancy, providing a set of diverse (unique) exceptional (survival) subgroups. Our framework outperforms the other existent approaches to provide characterisations over unusual survival behaviours regarding the descriptive aspect of its results and diversity of its findings.CAPESDiversos trabalhos na literatura dedicam-se a descobrir fatores associados a comportamentos de sobrevivência. As ferramentas computacionais utilizadas para tal são modelos globais projetados para estimar se e quando um dado evento de sobrevivência ocorrerá. Em se tratando do problema de explicar diferentes respostas de sobrevivência, as abordagens existentes não são capazes de descobrir excepcionalidades locais nos dados nem prover novos conhecimentos a respeito de fatores associados à sobrevivência, respaldando-se em suposições e a análises estratificadas. Este trabalho tem por objetivo apresentar uma nova ferramenta computacional para identificação e caracterização de diferentes respostas de sobrevivência existentes em uma população de indivíduos. Neste trabalho, o problema enunciado é abordado através da perspectiva da mineração supervisionada de padrões descritivos (em inglês, supervised descriptive pattern mining) com o intuito de descobrir padrões locais associados a diferentes comportamentos de sobrevivência. Para tal, é empregada a técnica de mineração de modelos excepcionais (do inglês, Exceptional Model Mining) com o objetivo de descrever – de forma simples e concisa – subgrupos que apresentem modelos de sobrevivência (Kaplan-Meier) não usuais. Em contraste às heurísticas ‘gulosas’ prevalentes na literatura de mineração de modelos excepcionais, a abordagem introduzida neste trabalho explora o uso da meta-heurística de otimização Ant-Colony Optimisation na busca por subgrupos. O problema de redundância de padrões também é considerado, objetivando a descoberta de um conjunto de subgrupos que sejam diversos com relação às suas descrições, coberturas e modelos. O desempenho da abordagem apresentada é avaliada em quatorze conjuntos de dados reais. Os resultados mostram que o algoritmo proposto é capaz de descobrir padrões representativos que apresentam modelos precisos e caracterizações de simples compreensão. Adicionalmente, os subgrupos descobertos potencialmente capturam comportamentos de sobrevivência existentes nos dados. A redundância de padrões é abordada de forma bem-sucedida, tal que os resultados retornados apresentam conjuntos de subgrupos que são diversos (únicos) e excepcionais. Quando comparado a outras abordagens existentes na literatura que fornecem caracterizações de comportamentos incomuns de sobrevivência, o algoritmo apresentado se sobressai aos demais tanto em relação ao aspecto descritivo de seus resultados quanto à diversidade de suas descobertas.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoVIMIEIRO, RenatoMATTOS NETO, Paulo Salgado Gomes dehttp://lattes.cnpq.br/7907615802587388http://lattes.cnpq.br/5736183954752317http://lattes.cnpq.br/4610098557429398MATTOS, Juliana Barcellos2022-07-04T16:04:48Z2022-07-04T16:04:48Z2021-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMATTOS, Juliana Barcellos. A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.https://repositorio.ufpe.br/handle/123456789/44957engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-07-05T05:18:47Zoai:repositorio.ufpe.br:123456789/44957Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-07-05T05:18:47Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
title A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
spellingShingle A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
MATTOS, Juliana Barcellos
Inteligência computacional
Mineração de modelos
title_short A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
title_full A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
title_fullStr A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
title_full_unstemmed A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
title_sort A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour
author MATTOS, Juliana Barcellos
author_facet MATTOS, Juliana Barcellos
author_role author
dc.contributor.none.fl_str_mv VIMIEIRO, Renato
MATTOS NETO, Paulo Salgado Gomes de
http://lattes.cnpq.br/7907615802587388
http://lattes.cnpq.br/5736183954752317
http://lattes.cnpq.br/4610098557429398
dc.contributor.author.fl_str_mv MATTOS, Juliana Barcellos
dc.subject.por.fl_str_mv Inteligência computacional
Mineração de modelos
topic Inteligência computacional
Mineração de modelos
description A variety of works in the literature strive to uncover the factors associated with survival behaviour. However, the computational tools to provide such information are global models designed to predict if or when a (survival) event will occur. When addressing the problem of explaining differences in survival behaviour, those approaches rely on (assumptions of) predictive features followed by risk stratification. In other words, they lack the ability to discover local exceptionalities in the data and provide new information on factors related to survival. In this work, we aim at providing a computational tool to identify the different (unusual) survival responses that may occur in a population of individuals and provide straightforward information about the circumstances related to such responses. We approach such a problem from the perspective of supervised descriptive pattern mining to discover local patterns associated with different survival behaviours. Hence, we introduce an Exceptional Model Mining (EMM) framework to provide straightforward characterisations of subgroups presenting unusual survival models, given by the Kaplan-Meier estimates. In contrast to the greedy search heuristics prevalent among EMM approaches, we employ stochastic optimisation and introduce the first approach in the literature to explore the Ant-Colony Optimisation (ACO) meta-heuristics for the subgroup search. Thus, we tackle the problem of subgroup redundancy to provide a set of exceptional subgroups that are diverse in their descriptions, coverages and survival models. We conducted experiments on fourteen real-world data sets to assess the performance of our approach. In the results, we show that the framework presented is capable of discovering representative patterns with accurate unusual models and straightforward representations. Moreover, the discovered subgroups potentially capture survival behaviours existent in the data. The approach successfully tackles the problem of subgroup redundancy, providing a set of diverse (unique) exceptional (survival) subgroups. Our framework outperforms the other existent approaches to provide characterisations over unusual survival behaviours regarding the descriptive aspect of its results and diversity of its findings.
publishDate 2021
dc.date.none.fl_str_mv 2021-12-10
2022-07-04T16:04:48Z
2022-07-04T16:04:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv MATTOS, Juliana Barcellos. A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
https://repositorio.ufpe.br/handle/123456789/44957
identifier_str_mv MATTOS, Juliana Barcellos. A supervised descriptive local pattern mining approach to the discovery of subgroups with exceptional survival behaviour. 2021. Dissertação (Mestrado em Ciência da Computação) - Universidade Federal de Pernambuco, Recife, 2021.
url https://repositorio.ufpe.br/handle/123456789/44957
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041979352186880