Exportação concluída — 

Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors

Detalhes bibliográficos
Ano de defesa: 2014
Autor(a) principal: Lima, João Paulo Silva do Monte
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/12143
Resumo: Augmented Reality systems are able to perform real-time 3D registration of virtual and real objects, which consists in correctly positioning the virtual objects with respect to the real ones such that the virtual elements seem to be real. A very popular way to perform this registration is using video based object detection and tracking with planar fiducial markers. Another way of sensing the real world using video is by relying on natural features of the environment, which is more complex than using artificial planar markers. Nevertheless, natural feature detection and tracking is mandatory or desirable in some Augmented Reality application scenarios. Object detection and tracking from natural features can make use of a 3D model of the object which was obtained a priori. If such model is not available, it can be acquired using 3D reconstruction. In this case, an RGB-D sensor can be used, which has become in recent years a product of easy access to general users. It provides both a color image and a depth image of the scene and, besides being used for object modeling, it can also offer important cues for object detection and tracking in real-time. In this context, the work proposed in this document aims to investigate the use of consumer RGB-D sensors for object detection and pose estimation from natural features, with the purpose of using such techniques for developing Augmented Reality applications. Two methods based on depth-assisted rectification are proposed, which transform features extracted from the color image to a canonical view using depth data in order to obtain a representation invariant to rotation, scale and perspective distortions. While one method is suitable for textured objects, either planar or non-planar, the other method focuses on texture-less planar objects. Qualitative and quantitative evaluations of the proposed methods are performed, showing that they can obtain better results than some existing methods for object detection and pose estimation, especially when dealing with oblique poses.
id UFPE_b5a5500c2a91333287397ef20568af08
oai_identifier_str oai:repositorio.ufpe.br:123456789/12143
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Object detection and pose estimation from rectification of natural features using consumer RGB-D sensorsAugmented realityNatural features trackingComputer visionRGB-D SensorRealidade aumentadaRastreamento de características naturaisVisão computacionalSensor RGB-DAugmented Reality systems are able to perform real-time 3D registration of virtual and real objects, which consists in correctly positioning the virtual objects with respect to the real ones such that the virtual elements seem to be real. A very popular way to perform this registration is using video based object detection and tracking with planar fiducial markers. Another way of sensing the real world using video is by relying on natural features of the environment, which is more complex than using artificial planar markers. Nevertheless, natural feature detection and tracking is mandatory or desirable in some Augmented Reality application scenarios. Object detection and tracking from natural features can make use of a 3D model of the object which was obtained a priori. If such model is not available, it can be acquired using 3D reconstruction. In this case, an RGB-D sensor can be used, which has become in recent years a product of easy access to general users. It provides both a color image and a depth image of the scene and, besides being used for object modeling, it can also offer important cues for object detection and tracking in real-time. In this context, the work proposed in this document aims to investigate the use of consumer RGB-D sensors for object detection and pose estimation from natural features, with the purpose of using such techniques for developing Augmented Reality applications. Two methods based on depth-assisted rectification are proposed, which transform features extracted from the color image to a canonical view using depth data in order to obtain a representation invariant to rotation, scale and perspective distortions. While one method is suitable for textured objects, either planar or non-planar, the other method focuses on texture-less planar objects. Qualitative and quantitative evaluations of the proposed methods are performed, showing that they can obtain better results than some existing methods for object detection and pose estimation, especially when dealing with oblique poses.Sistemas de Realidade Aumentada são capazes de realizar registro 3D em tempo real de objetos virtuais e reais, o que consiste em posicionar corretamente os objetos virtuais em relação aos reais de forma que os elementos virtuais pareçam ser reais. Uma maneira bastante popular de realizar esse registro é usando detecção e rastreamento de objetos baseado em vídeo a partir de marcadores fiduciais planares. Outra maneira de sensoriar o mundo real usando vídeo é utilizando características naturais do ambiente, o que é mais complexo que usar marcadores planares artificiais. Entretanto, detecção e rastreamento de características naturais é mandatório ou desejável em alguns cenários de aplicação de Realidade Aumentada. A detecção e o rastreamento de objetos a partir de características naturais pode fazer uso de um modelo 3D do objeto obtido a priori. Se tal modelo não está disponível, ele pode ser adquirido usando reconstrução 3D, por exemplo. Nesse caso, um sensor RGB-D pode ser usado, que se tornou nos últimos anos um produto de fácil acesso aos usuários em geral. Ele provê uma imagem em cores e uma imagem de profundidade da cena e, além de ser usado para modelagem de objetos, também pode oferecer informações importantes para a detecção e o rastreamento de objetos em tempo real. Nesse contexto, o trabalho proposto neste documento tem por finalidade investigar o uso de sensores RGB-D de consumo para detecção e estimação de pose de objetos a partir de características naturais, com o propósito de usar tais técnicas para desenvolver aplicações de Realidade Aumentada. Dois métodos baseados em retificação auxiliada por profundidade são propostos, que transformam características extraídas de uma imagem em cores para uma vista canônica usando dados de profundidade para obter uma representação invariante a rotação, escala e distorções de perspectiva. Enquanto um método é adequado a objetos texturizados, tanto planares como não-planares, o outro método foca em objetos planares não texturizados. Avaliações qualitativas e quantitativas dos métodos propostos são realizadas, mostrando que eles podem obter resultados melhores que alguns métodos existentes para detecção e estimação de pose de objetos, especialmente ao lidar com poses oblíquas.CAPES , CNPqUniversidade Federal de PernambucoTeichrieb, Veronica Lima, João Paulo Silva do Monte2015-03-12T13:53:20Z2015-03-12T13:53:20Z2014-01-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfLIMA, João Paulo Silva do Monte. Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors. Recife, 2014. 99 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014..https://repositorio.ufpe.br/handle/123456789/12143engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T07:53:32Zoai:repositorio.ufpe.br:123456789/12143Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T07:53:32Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
title Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
spellingShingle Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
Lima, João Paulo Silva do Monte
Augmented reality
Natural features tracking
Computer vision
RGB-D Sensor
Realidade aumentada
Rastreamento de características naturais
Visão computacional
Sensor RGB-D
title_short Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
title_full Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
title_fullStr Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
title_full_unstemmed Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
title_sort Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors
author Lima, João Paulo Silva do Monte
author_facet Lima, João Paulo Silva do Monte
author_role author
dc.contributor.none.fl_str_mv Teichrieb, Veronica
dc.contributor.author.fl_str_mv Lima, João Paulo Silva do Monte
dc.subject.por.fl_str_mv Augmented reality
Natural features tracking
Computer vision
RGB-D Sensor
Realidade aumentada
Rastreamento de características naturais
Visão computacional
Sensor RGB-D
topic Augmented reality
Natural features tracking
Computer vision
RGB-D Sensor
Realidade aumentada
Rastreamento de características naturais
Visão computacional
Sensor RGB-D
description Augmented Reality systems are able to perform real-time 3D registration of virtual and real objects, which consists in correctly positioning the virtual objects with respect to the real ones such that the virtual elements seem to be real. A very popular way to perform this registration is using video based object detection and tracking with planar fiducial markers. Another way of sensing the real world using video is by relying on natural features of the environment, which is more complex than using artificial planar markers. Nevertheless, natural feature detection and tracking is mandatory or desirable in some Augmented Reality application scenarios. Object detection and tracking from natural features can make use of a 3D model of the object which was obtained a priori. If such model is not available, it can be acquired using 3D reconstruction. In this case, an RGB-D sensor can be used, which has become in recent years a product of easy access to general users. It provides both a color image and a depth image of the scene and, besides being used for object modeling, it can also offer important cues for object detection and tracking in real-time. In this context, the work proposed in this document aims to investigate the use of consumer RGB-D sensors for object detection and pose estimation from natural features, with the purpose of using such techniques for developing Augmented Reality applications. Two methods based on depth-assisted rectification are proposed, which transform features extracted from the color image to a canonical view using depth data in order to obtain a representation invariant to rotation, scale and perspective distortions. While one method is suitable for textured objects, either planar or non-planar, the other method focuses on texture-less planar objects. Qualitative and quantitative evaluations of the proposed methods are performed, showing that they can obtain better results than some existing methods for object detection and pose estimation, especially when dealing with oblique poses.
publishDate 2014
dc.date.none.fl_str_mv 2014-01-31
2015-03-12T13:53:20Z
2015-03-12T13:53:20Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv LIMA, João Paulo Silva do Monte. Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors. Recife, 2014. 99 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014..
https://repositorio.ufpe.br/handle/123456789/12143
identifier_str_mv LIMA, João Paulo Silva do Monte. Object detection and pose estimation from rectification of natural features using consumer RGB-D sensors. Recife, 2014. 99 f. Tese (doutorado) - UFPE, Centro de Informática, Programa de Pós-graduação em Ciência da Computação, 2014..
url https://repositorio.ufpe.br/handle/123456789/12143
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
publisher.none.fl_str_mv Universidade Federal de Pernambuco
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042054365216768