Advances in new continuous distributions and families : theoretical methods and applications

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: FERREIRA, Alexsandro Arruda
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/63501
Resumo: Classical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modeling
id UFPE_c4147bd102cd4c2ede25707a210fbde5
oai_identifier_str oai:repositorio.ufpe.br:123456789/63501
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Advances in new continuous distributions and families : theoretical methods and applicationsNew distributionsNew familiesAcceptancerejection methodClassical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modelingDistribuições clássicas tais como exponencial, Weibull, Burr XII, log-logística e beta têm sido amplamente utilizadas para modelar vários tipos de dados em diferentes campos. Entretanto, com o desenvolvimento da ciência da computação, distribuições mais flexíveis são necessárias para abordar conjuntos de dados cada vez mais complexos. Nas últimas três décadas, vários estudos propuseram novas distribuições flexíveis, acrescentando parâmetros às distribuições existentes, utilizando geradores de distribuições como Marshall-Olkin-G, beta-G e Kumaraswamy-G. Uma revisão da família gamma-G é empregada, juntamente com quatro novas distribuições, a saber, a gamma flexible Weibull, a exponentiated power Ishita, a flexible generalized gamma e a generalized Marshall-Olkin Lomax. Além disso, são introduzidos cinco novas famílias de distribuições: a exponential Power-G, a Marshall-Olkin flexible generalized, a odd power Ishita-G, a modified Kies flexible generalized, e a modified odd Burr XII-G. Modelos de regressão também são implementados com base nas novas famílias e distribuições, e o método da máxima verossimilhança é adotado para estimar seus parâmetros. Estudos de simulação são realizados para verificar sua consistência. Além disso, o potencial dos novos modelos é demonstrado usando conjuntos de dados reais, incluindo dados da COVID-19. Os resultados mostram que os modelos propostos são eficazes na captura dos padrões complexos observados nos dados e superam as distribuições clássicas existentes. Em geral, este trabalho contribui para o desenvolvimento de distribuições mais flexíveis e precisas para a modelagem de dados.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCORDEIRO, Gauss Moutinhohttp://lattes.cnpq.br/2093053835024820http://lattes.cnpq.br/3268732497595112FERREIRA, Alexsandro Arruda2025-05-30T16:07:57Z2025-05-30T16:07:57Z2025-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/63501enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-05-31T05:33:00Zoai:repositorio.ufpe.br:123456789/63501Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-05-31T05:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Advances in new continuous distributions and families : theoretical methods and applications
title Advances in new continuous distributions and families : theoretical methods and applications
spellingShingle Advances in new continuous distributions and families : theoretical methods and applications
FERREIRA, Alexsandro Arruda
New distributions
New families
Acceptance
rejection method
title_short Advances in new continuous distributions and families : theoretical methods and applications
title_full Advances in new continuous distributions and families : theoretical methods and applications
title_fullStr Advances in new continuous distributions and families : theoretical methods and applications
title_full_unstemmed Advances in new continuous distributions and families : theoretical methods and applications
title_sort Advances in new continuous distributions and families : theoretical methods and applications
author FERREIRA, Alexsandro Arruda
author_facet FERREIRA, Alexsandro Arruda
author_role author
dc.contributor.none.fl_str_mv CORDEIRO, Gauss Moutinho
http://lattes.cnpq.br/2093053835024820
http://lattes.cnpq.br/3268732497595112
dc.contributor.author.fl_str_mv FERREIRA, Alexsandro Arruda
dc.subject.por.fl_str_mv New distributions
New families
Acceptance
rejection method
topic New distributions
New families
Acceptance
rejection method
description Classical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modeling
publishDate 2025
dc.date.none.fl_str_mv 2025-05-30T16:07:57Z
2025-05-30T16:07:57Z
2025-03-18
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv FERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025.
https://repositorio.ufpe.br/handle/123456789/63501
identifier_str_mv FERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025.
url https://repositorio.ufpe.br/handle/123456789/63501
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041883507097600