Advances in new continuous distributions and families : theoretical methods and applications
| Ano de defesa: | 2025 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso embargado |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/63501 |
Resumo: | Classical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modeling |
| id |
UFPE_c4147bd102cd4c2ede25707a210fbde5 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/63501 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Advances in new continuous distributions and families : theoretical methods and applicationsNew distributionsNew familiesAcceptancerejection methodClassical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modelingDistribuições clássicas tais como exponencial, Weibull, Burr XII, log-logística e beta têm sido amplamente utilizadas para modelar vários tipos de dados em diferentes campos. Entretanto, com o desenvolvimento da ciência da computação, distribuições mais flexíveis são necessárias para abordar conjuntos de dados cada vez mais complexos. Nas últimas três décadas, vários estudos propuseram novas distribuições flexíveis, acrescentando parâmetros às distribuições existentes, utilizando geradores de distribuições como Marshall-Olkin-G, beta-G e Kumaraswamy-G. Uma revisão da família gamma-G é empregada, juntamente com quatro novas distribuições, a saber, a gamma flexible Weibull, a exponentiated power Ishita, a flexible generalized gamma e a generalized Marshall-Olkin Lomax. Além disso, são introduzidos cinco novas famílias de distribuições: a exponential Power-G, a Marshall-Olkin flexible generalized, a odd power Ishita-G, a modified Kies flexible generalized, e a modified odd Burr XII-G. Modelos de regressão também são implementados com base nas novas famílias e distribuições, e o método da máxima verossimilhança é adotado para estimar seus parâmetros. Estudos de simulação são realizados para verificar sua consistência. Além disso, o potencial dos novos modelos é demonstrado usando conjuntos de dados reais, incluindo dados da COVID-19. Os resultados mostram que os modelos propostos são eficazes na captura dos padrões complexos observados nos dados e superam as distribuições clássicas existentes. Em geral, este trabalho contribui para o desenvolvimento de distribuições mais flexíveis e precisas para a modelagem de dados.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCORDEIRO, Gauss Moutinhohttp://lattes.cnpq.br/2093053835024820http://lattes.cnpq.br/3268732497595112FERREIRA, Alexsandro Arruda2025-05-30T16:07:57Z2025-05-30T16:07:57Z2025-03-18info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025.https://repositorio.ufpe.br/handle/123456789/63501enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2025-05-31T05:33:00Zoai:repositorio.ufpe.br:123456789/63501Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212025-05-31T05:33Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Advances in new continuous distributions and families : theoretical methods and applications |
| title |
Advances in new continuous distributions and families : theoretical methods and applications |
| spellingShingle |
Advances in new continuous distributions and families : theoretical methods and applications FERREIRA, Alexsandro Arruda New distributions New families Acceptance rejection method |
| title_short |
Advances in new continuous distributions and families : theoretical methods and applications |
| title_full |
Advances in new continuous distributions and families : theoretical methods and applications |
| title_fullStr |
Advances in new continuous distributions and families : theoretical methods and applications |
| title_full_unstemmed |
Advances in new continuous distributions and families : theoretical methods and applications |
| title_sort |
Advances in new continuous distributions and families : theoretical methods and applications |
| author |
FERREIRA, Alexsandro Arruda |
| author_facet |
FERREIRA, Alexsandro Arruda |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
CORDEIRO, Gauss Moutinho http://lattes.cnpq.br/2093053835024820 http://lattes.cnpq.br/3268732497595112 |
| dc.contributor.author.fl_str_mv |
FERREIRA, Alexsandro Arruda |
| dc.subject.por.fl_str_mv |
New distributions New families Acceptance rejection method |
| topic |
New distributions New families Acceptance rejection method |
| description |
Classical distributions such as exponential, Weibull, Burr XII, log-logistic, and beta have been widely used to model various types of data in different fields. However, with the development of computer science, more flexible distributions are needed to deal with increasingly complex data sets. In the last three decades, several studies have proposed new flexible distributions, adding more parameters to the existing ones using distribution generators such as MarshallOlkin-G, beta-G, and Kumaraswamy-G. A revision of the gamma-G family is employed, along with four new distributions, namely, the gamma flexible Weibull, the exponentiated power Ishita, the flexible generalized gamma, and the generalized Marshall-Olkin Lomax. In addition, five new families of distributions are developed: the exponential Power-G, the Marshall-Olkin flexible generalized, the odd power Ishita-G, the modified Kies flexible generalized, and the modified odd Bur XII-G. Regression models are also implemented based on the new families and distributions, and the maximum likelihood method is adopted to estimate their parameters. Simulation studies are carried out to verify their consistency. In addition, the potential of the new models is demonstrated using real data sets, including COVID-19 data. The results show that the proposed models effectively capture the complex patterns observed in the data and outperform existing classical distributions. Overall, this work contributes to developing more flexible and accurate distributions for data modeling |
| publishDate |
2025 |
| dc.date.none.fl_str_mv |
2025-05-30T16:07:57Z 2025-05-30T16:07:57Z 2025-03-18 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025. https://repositorio.ufpe.br/handle/123456789/63501 |
| identifier_str_mv |
FERREIRA, Alexsandro Arruda.Advances in new continuous distributions and families: theoretical methods and applications. 2025. Tese (Doutorado em Estatística) - Universidade Federal de Pernambuco, Recife, 2025. |
| url |
https://repositorio.ufpe.br/handle/123456789/63501 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041883507097600 |