An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: RODRIGUES, Maria Luiza Nascimento
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/38964
Resumo: Smart homes can be defined as environments monitored by sensors that capture information executed in it. These sensors are responsible for measure the temperature of a room, the number of times a switch has been turned on, and so on. However, the data obtained in these scenarios may vary during or after the capture process. These variations are defined as noise and affect the interpretation of the data. Given the information obtained from the environment, machine learning techniques can use this knowledge to identify the activities and predict future ones. This area of learning is named Activity Recognition. In recent studies, the Random Forest presented consistent results in Activity Recognition problems in noisy-free environments. To identify which techniques can be used in noisy scenarios, this dissertation evaluated the use of Multiple Classifier Systems in comparison to Random Forest. The proposal is to investigate how these techniques perform on real-world data sets for activity recognition considering six noise levels: 0% to 50%, which refers to a randomly changing in the label activities. Experimental results have shown that the Dynamic Selection techniques are adequate to handle noisy environments presenting stable results as the noise level increases. The performance of OLA and MCB was significantly better than Random Forest even with the 50% noise level.
id UFPE_d33b6e8731b3dc8ca4e58f3beff94318
oai_identifier_str oai:repositorio.ufpe.br:123456789/38964
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homesInteligência computacionalSistemas de classificação múltiplaSmart homes can be defined as environments monitored by sensors that capture information executed in it. These sensors are responsible for measure the temperature of a room, the number of times a switch has been turned on, and so on. However, the data obtained in these scenarios may vary during or after the capture process. These variations are defined as noise and affect the interpretation of the data. Given the information obtained from the environment, machine learning techniques can use this knowledge to identify the activities and predict future ones. This area of learning is named Activity Recognition. In recent studies, the Random Forest presented consistent results in Activity Recognition problems in noisy-free environments. To identify which techniques can be used in noisy scenarios, this dissertation evaluated the use of Multiple Classifier Systems in comparison to Random Forest. The proposal is to investigate how these techniques perform on real-world data sets for activity recognition considering six noise levels: 0% to 50%, which refers to a randomly changing in the label activities. Experimental results have shown that the Dynamic Selection techniques are adequate to handle noisy environments presenting stable results as the noise level increases. The performance of OLA and MCB was significantly better than Random Forest even with the 50% noise level.Casas inteligentes podem ser definidas como ambientes monitorados por sensores que capturam as informações nele executadas. Esses sensores são responsáveis por medir a temperatura de uma sala, o número de vezes que um interruptor foi ligado e assim por diante. No entanto, os dados obtidos nesses cenários podem variar durante ou após o processo de captura. Essas variações são definidas como ruído e afetam a interpretação dos dados. Dadas as informações obtidas do ambiente, as técnicas de aprendizado de máquina podem usar esse conhecimento para identificar as atividades executadas e prever as futuras. Essa área de aprendizado é denominada Reconhecimento de Atividade. Recentemente, a Random Forest apresentou resultados consistentes em problemas de reconhecimento de atividade em ambientes sem ruído. Para identificar quais técnicas podem ser usadas em cenários ruidosos para residências inteligentes, esta dissertação avaliou o uso de sistemas de múltiplos classificadores em comparação com o desempenho obtido pela Random Forest. A proposta é investigar o desempenho dessas técnicas em conjuntos de dados do mundo real para reconhecimento de atividades, considerando seis níveis de ruído: 0% a 50%. Resultados experimentais mostraram que as técnicas de seleção dinâmica são adequadas para lidar com ambientes ruidosos, apresentando resultados estáveis à medida que o nível de ruído aumenta. O desempenho do OLA e MCB foi significativamente melhor que o Random Forest, mesmo com o nível de ruído de 50%.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoCAVALCANTI, George Darmiton da Cunhahttp://lattes.cnpq.br/6951870319311329http://lattes.cnpq.br/8577312109146354RODRIGUES, Maria Luiza Nascimento2021-01-06T18:27:14Z2021-01-06T18:27:14Z2020-08-13info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfRODRIGUES, Maria Luiza Nascimento. An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart home. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38964engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2021-01-07T05:13:05Zoai:repositorio.ufpe.br:123456789/38964Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212021-01-07T05:13:05Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
title An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
spellingShingle An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
RODRIGUES, Maria Luiza Nascimento
Inteligência computacional
Sistemas de classificação múltipla
title_short An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
title_full An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
title_fullStr An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
title_full_unstemmed An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
title_sort An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart homes
author RODRIGUES, Maria Luiza Nascimento
author_facet RODRIGUES, Maria Luiza Nascimento
author_role author
dc.contributor.none.fl_str_mv CAVALCANTI, George Darmiton da Cunha
http://lattes.cnpq.br/6951870319311329
http://lattes.cnpq.br/8577312109146354
dc.contributor.author.fl_str_mv RODRIGUES, Maria Luiza Nascimento
dc.subject.por.fl_str_mv Inteligência computacional
Sistemas de classificação múltipla
topic Inteligência computacional
Sistemas de classificação múltipla
description Smart homes can be defined as environments monitored by sensors that capture information executed in it. These sensors are responsible for measure the temperature of a room, the number of times a switch has been turned on, and so on. However, the data obtained in these scenarios may vary during or after the capture process. These variations are defined as noise and affect the interpretation of the data. Given the information obtained from the environment, machine learning techniques can use this knowledge to identify the activities and predict future ones. This area of learning is named Activity Recognition. In recent studies, the Random Forest presented consistent results in Activity Recognition problems in noisy-free environments. To identify which techniques can be used in noisy scenarios, this dissertation evaluated the use of Multiple Classifier Systems in comparison to Random Forest. The proposal is to investigate how these techniques perform on real-world data sets for activity recognition considering six noise levels: 0% to 50%, which refers to a randomly changing in the label activities. Experimental results have shown that the Dynamic Selection techniques are adequate to handle noisy environments presenting stable results as the noise level increases. The performance of OLA and MCB was significantly better than Random Forest even with the 50% noise level.
publishDate 2020
dc.date.none.fl_str_mv 2020-08-13
2021-01-06T18:27:14Z
2021-01-06T18:27:14Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RODRIGUES, Maria Luiza Nascimento. An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart home. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.
https://repositorio.ufpe.br/handle/123456789/38964
identifier_str_mv RODRIGUES, Maria Luiza Nascimento. An evaluation of dynamic selection robustness in noisy environments for activity recognition in smart home. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.
url https://repositorio.ufpe.br/handle/123456789/38964
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Ciencia da Computacao
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042107016314880