Clustering-based dynamic ensemble selection for one-class decomposition
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/48095 |
Resumo: | A natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions. |
| id |
UFPE_552a51e9c8a041c6784de3160f153891 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/48095 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Clustering-based dynamic ensemble selection for one-class decompositionInteligência computacionalSistemas de múltiplos classificadoresA natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions.CNPqUma solução natural para lidar com problemas multi-classe é empregar classificadores multi-classe. No entanto, em situações específicas, como dados desbalanceados ou grande número de classes, decompor o problema multiclasse em vários problemas mais fáceis de resolver pode ser mais eficaz. A decomposição em uma classe é uma alternativa, onde classificadores de uma classe (OCCs) são treinados para cada classe separadamente. No entanto, ajustar os dados de forma otimizada é um desafio para os classificadores, principalmente quando os dados apresentam uma distribuição intra-classe complexa. A literatura mostra que sistemas de múltiplos classificadores são inerentemente robustos em tais casos. Assim, a adoção de múltiplos OCCs para cada classe pode levar a uma melhoria de desempenho na decomposição de uma classe. Com isso em mente, neste trabalho apresentamos dois métodos para classificação de problemas multi-classe através ensembles de OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES) e Density-Based Dynamic Ensemble Selection (DBDES) fornecem classificadores competentes para cada região do espaço de características, decompondo o problema multiclasse original em vários problemas de uma classe, segmentam os dados de cada classe e um OCC é treinado para cada cluster. MODES utiliza o algoritmo K-means e um conjunto de índices de validação de cluster enquanto DBDES utiliza o algoritmo OPTICS para a segmentação dos dados. A lógica é reduzir a complexidade da tarefa de classificação definindo uma região do espaço de características onde o classificador deve ser um especialista. A classificação de uma instância de teste é realizada selecionando dinamicamente um conjunto de OCCs competentes e a decisão final é dada pela reconstrução do problema multiclasse original. Experimentos realizados com 25 bancos de dados, 4 modelos OCC e 3 métodos de agregação mostraram que as técnicas propostas superam a literatura. Quando comparado com técnicas da literatura, MODES e DBDES obtiveram melhores resul- tados, principalmente para bancos de dados com regiões de decisão complexas.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoCAVALCANTI, George Darmiton da CunhaPINHEIRO, Roberto Hugo WanderleyOLIVEIRA, Luiz Eduardo Soares dehttp://lattes.cnpq.br/3641521745238692http://lattes.cnpq.br/8577312109146354http://lattes.cnpq.br/9378863653048055http://lattes.cnpq.br/8607171759049558FRAGOSO, Rogério César Peixoto2022-12-06T11:30:39Z2022-12-06T11:30:39Z2022-08-24info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022.https://repositorio.ufpe.br/handle/123456789/48095enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2022-12-07T05:17:47Zoai:repositorio.ufpe.br:123456789/48095Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212022-12-07T05:17:47Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Clustering-based dynamic ensemble selection for one-class decomposition |
| title |
Clustering-based dynamic ensemble selection for one-class decomposition |
| spellingShingle |
Clustering-based dynamic ensemble selection for one-class decomposition FRAGOSO, Rogério César Peixoto Inteligência computacional Sistemas de múltiplos classificadores |
| title_short |
Clustering-based dynamic ensemble selection for one-class decomposition |
| title_full |
Clustering-based dynamic ensemble selection for one-class decomposition |
| title_fullStr |
Clustering-based dynamic ensemble selection for one-class decomposition |
| title_full_unstemmed |
Clustering-based dynamic ensemble selection for one-class decomposition |
| title_sort |
Clustering-based dynamic ensemble selection for one-class decomposition |
| author |
FRAGOSO, Rogério César Peixoto |
| author_facet |
FRAGOSO, Rogério César Peixoto |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
CAVALCANTI, George Darmiton da Cunha PINHEIRO, Roberto Hugo Wanderley OLIVEIRA, Luiz Eduardo Soares de http://lattes.cnpq.br/3641521745238692 http://lattes.cnpq.br/8577312109146354 http://lattes.cnpq.br/9378863653048055 http://lattes.cnpq.br/8607171759049558 |
| dc.contributor.author.fl_str_mv |
FRAGOSO, Rogério César Peixoto |
| dc.subject.por.fl_str_mv |
Inteligência computacional Sistemas de múltiplos classificadores |
| topic |
Inteligência computacional Sistemas de múltiplos classificadores |
| description |
A natural solution to tackle multi-class problems is employing multi-class classifiers. How- ever, in specific situations, such as imbalanced data or a high number of classes, it is more effective to decompose the multi-class problem into several and easier to solve problems. One- class decomposition is an alternative, where one-class classifiers (OCCs) are trained for each class separately. However, fitting the data optimally is a challenge for classifiers, especially when it presents a complex intra-class distribution. The literature shows that multiple classifier systems are inherently robust in such cases. Thus, the adoption of multiple OCCs foreach class can lead to an improvement for the one-class decomposition. With that in mind, in this work, we introduce two methods for multi-class classification using ensembles of OCCs. One-class Classifier Dynamic Ensemble Selection for Multi-class problems (MODES, for short) and Density-Based Dynamic Ensemble Selection (DBDES) provide competent classifiers for each region of the feature space by decomposing the original multi-class problem into multiple one-class problems, segmenting the data from each class, and training a OCC for each cluster. The rationale is to reduce the complexity of the classification task by defining a region of the feature space where the classifier is supposed to be an expert. The classification of a test instance is performed by dynamically selecting an ensemble of competent OCCs and the final decision is given by the reconstruction of the original multi-class problem. Experiments carried out with 25 databases, 4 OCC models, and 3 aggregation methods showed that the proposed techniques outperform the literature. When compared with literature techniques, MODES and DBDES obtained better results, especially for databases with complex decision regions. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-12-06T11:30:39Z 2022-12-06T11:30:39Z 2022-08-24 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. https://repositorio.ufpe.br/handle/123456789/48095 |
| identifier_str_mv |
FRAGOSO, Rogério César Peixoto. Clustering-based dynamic ensemble selection for one-class decomposition. 2022 Tese (Doutorado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2022. |
| url |
https://repositorio.ufpe.br/handle/123456789/48095 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856042016456048640 |