Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções

Detalhes bibliográficos
Ano de defesa: 2016
Autor(a) principal: ALENCAR, Francisco Hildemar Calixto de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pernambuco
ufpe
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/17127
Resumo: Existem situações na modelagem estatística em que a variável de interesse é contínua e restrita no intervalo aberto (0, 1), tais como taxas e proporções. Esses tipos de variáveis tipicamente apresentam características de assimetria e heteroscedasticidade, sendo assim inapropriado o uso do modelo normal linear. Kieschnick e McCullough (2003) indicaram após estudos de diferentes estratégias para modelar tais variáveis, o uso do modelo de regressão beta. Contudo, Hahn (2008) e García et al. (2011) observaram que a distribuição beta não é apropriada para o caso em que há ocorrência de eventos extremos; isto é, eventos que possam ocorrer na cauda da distribuição. Com o intuito de obter maior flexibilidade no modelo de regressão beta, Bayes et al. (2012) propuseram o modelo de regressão beta retangular considerando a distribuição beta retangular proposta por Hahn (2008). Este modelo possui como casos particulares o modelo de regressão beta proposto por Ferrari e Cribari-Neto (2004) e o modelo de regressão beta com dispersão variável proposto por Smithson e Verkuilen (2006). Esta dissertação tem como proposta avaliar o uso das divergências Kullback-Leibler e χ 2 , bem como, das distâncias estocásticas Kullback-Leibler, χ 2 , Bhattacharyya, Hellinger, triangular e média-harmônica e da distância L1 norm na detecção de observações atípicas nos modelos de regressão beta e beta retangular. Com este fim, realizamos um estudo de simulação de Monte Carlo em que ajustamos, sob o enfoque Bayesiano esses dois modelos. Nesse estudo, observamos que a divergência χ 2 demonstrou maior eficiência, que as demais medidas, na detecção de observações atípicas. A introdução dos pontos atípicos foi feita em ambas as variáveis, dependente e regressora. Por fim, apresentamos uma aplicação utilizando o conjunto de dados AIS (Australian Institute of Sport).
id UFPE_d4a40530ea527218b11835bc08b480f6
oai_identifier_str oai:repositorio.ufpe.br:123456789/17127
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporçõesRobustezPontosatípicos.DistânciasestocásticasRobustness.AtypicalpointsStochasticdistances.Existem situações na modelagem estatística em que a variável de interesse é contínua e restrita no intervalo aberto (0, 1), tais como taxas e proporções. Esses tipos de variáveis tipicamente apresentam características de assimetria e heteroscedasticidade, sendo assim inapropriado o uso do modelo normal linear. Kieschnick e McCullough (2003) indicaram após estudos de diferentes estratégias para modelar tais variáveis, o uso do modelo de regressão beta. Contudo, Hahn (2008) e García et al. (2011) observaram que a distribuição beta não é apropriada para o caso em que há ocorrência de eventos extremos; isto é, eventos que possam ocorrer na cauda da distribuição. Com o intuito de obter maior flexibilidade no modelo de regressão beta, Bayes et al. (2012) propuseram o modelo de regressão beta retangular considerando a distribuição beta retangular proposta por Hahn (2008). Este modelo possui como casos particulares o modelo de regressão beta proposto por Ferrari e Cribari-Neto (2004) e o modelo de regressão beta com dispersão variável proposto por Smithson e Verkuilen (2006). Esta dissertação tem como proposta avaliar o uso das divergências Kullback-Leibler e χ 2 , bem como, das distâncias estocásticas Kullback-Leibler, χ 2 , Bhattacharyya, Hellinger, triangular e média-harmônica e da distância L1 norm na detecção de observações atípicas nos modelos de regressão beta e beta retangular. Com este fim, realizamos um estudo de simulação de Monte Carlo em que ajustamos, sob o enfoque Bayesiano esses dois modelos. Nesse estudo, observamos que a divergência χ 2 demonstrou maior eficiência, que as demais medidas, na detecção de observações atípicas. A introdução dos pontos atípicos foi feita em ambas as variáveis, dependente e regressora. Por fim, apresentamos uma aplicação utilizando o conjunto de dados AIS (Australian Institute of Sport).capesThere are situations in the statistical modeling where the interested variable is continuous and restricted in the open interval (0,1) as rates and proportions. This type of variables typically show characteristics of asymmetry and heterocedasticity, this way unappropriated the use of the linear normal model. Kieschnick e McCullough (2003) after studies of different strategies to model variables of rates and proportions indicate the use of the regression model based on the beta distribution. However, Hahn (2008) and García et al. (2011) observed which the beta distribution is not appropriated for case where there are events in the tail of the distribution. In order to obtain greater flexibility in the beta regression model Bayes et al. (2012) proposed the rectangular beta regression model based on rectangular beta distribution proposed by Hahn (2008). This model has as particular cases the beta regression model proposed by Ferrari e Cribari-Neto (2004) and the beta regression model with variable dispersion proposed by Smithson e Verkuilen (2006). This dissertation has the purpose of evaluate the use of divergences Kullback-Leibler and χ 2 as well of stochastic distances Kullback-Leibler, χ 2 , Bhattacharyya, Hellinger, triangular and média-harmônica, and distance L1 norm in detecting atypical points in beta regression model and beta rectangular regression model. To this end, we conducted a Monte Carlo simulation study in which fitted under the Bayesian approach, these two models. This study showed that the difference χ 2 demonstrated higher efficiency than the other measures, the detection of atypical observations.The introduction of atypical points was carried out in both variables, dependent and independent. Finally, we present an application using the set of AIS (Australian Institute of Sport).Universidade Federal de PernambucoufpeBrasilPrograma de Pos Graduacao em EstatisticaMARTÍNEZ, Raydonal OspinaNOBRE, Juvêncio SantosALENCAR, Francisco Hildemar Calixto de2016-06-20T16:57:47Z2016-06-20T16:57:47Z2016-02-03info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttps://repositorio.ufpe.br/handle/123456789/17127porAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2019-10-25T05:05:13Zoai:repositorio.ufpe.br:123456789/17127Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212019-10-25T05:05:13Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
title Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
spellingShingle Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
ALENCAR, Francisco Hildemar Calixto de
Robustez
Pontosatípicos.
Distânciasestocásticas
Robustness.
Atypicalpoints
Stochasticdistances.
title_short Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
title_full Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
title_fullStr Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
title_full_unstemmed Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
title_sort Diagnóstico de influência para uma família de modelos de regressão para dados de taxas e proporções
author ALENCAR, Francisco Hildemar Calixto de
author_facet ALENCAR, Francisco Hildemar Calixto de
author_role author
dc.contributor.none.fl_str_mv MARTÍNEZ, Raydonal Ospina
NOBRE, Juvêncio Santos
dc.contributor.author.fl_str_mv ALENCAR, Francisco Hildemar Calixto de
dc.subject.por.fl_str_mv Robustez
Pontosatípicos.
Distânciasestocásticas
Robustness.
Atypicalpoints
Stochasticdistances.
topic Robustez
Pontosatípicos.
Distânciasestocásticas
Robustness.
Atypicalpoints
Stochasticdistances.
description Existem situações na modelagem estatística em que a variável de interesse é contínua e restrita no intervalo aberto (0, 1), tais como taxas e proporções. Esses tipos de variáveis tipicamente apresentam características de assimetria e heteroscedasticidade, sendo assim inapropriado o uso do modelo normal linear. Kieschnick e McCullough (2003) indicaram após estudos de diferentes estratégias para modelar tais variáveis, o uso do modelo de regressão beta. Contudo, Hahn (2008) e García et al. (2011) observaram que a distribuição beta não é apropriada para o caso em que há ocorrência de eventos extremos; isto é, eventos que possam ocorrer na cauda da distribuição. Com o intuito de obter maior flexibilidade no modelo de regressão beta, Bayes et al. (2012) propuseram o modelo de regressão beta retangular considerando a distribuição beta retangular proposta por Hahn (2008). Este modelo possui como casos particulares o modelo de regressão beta proposto por Ferrari e Cribari-Neto (2004) e o modelo de regressão beta com dispersão variável proposto por Smithson e Verkuilen (2006). Esta dissertação tem como proposta avaliar o uso das divergências Kullback-Leibler e χ 2 , bem como, das distâncias estocásticas Kullback-Leibler, χ 2 , Bhattacharyya, Hellinger, triangular e média-harmônica e da distância L1 norm na detecção de observações atípicas nos modelos de regressão beta e beta retangular. Com este fim, realizamos um estudo de simulação de Monte Carlo em que ajustamos, sob o enfoque Bayesiano esses dois modelos. Nesse estudo, observamos que a divergência χ 2 demonstrou maior eficiência, que as demais medidas, na detecção de observações atípicas. A introdução dos pontos atípicos foi feita em ambas as variáveis, dependente e regressora. Por fim, apresentamos uma aplicação utilizando o conjunto de dados AIS (Australian Institute of Sport).
publishDate 2016
dc.date.none.fl_str_mv 2016-06-20T16:57:47Z
2016-06-20T16:57:47Z
2016-02-03
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://repositorio.ufpe.br/handle/123456789/17127
url https://repositorio.ufpe.br/handle/123456789/17127
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivs 3.0 Brazil
http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
ufpe
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
ufpe
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856042022086901760