Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
| Ano de defesa: | 2023 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso embargado |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Estatistica |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/51394 |
Resumo: | Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware. |
| id |
UFPE_e33fd48d42e245a33de5777325ef9775 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/51394 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inferenceEstatística aplicadaTransformadas discretasTransformadas aproximadas de baixa complexidadeCompressão de imagensDiscrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.FACEPETransformadas discretas desempenham um papel importante no contexto de processamento de sinais. Elas são ferramentas pivotais pois permitem analisar e interpretar dados no domínio das transformadas, que frequentemente revelam padrões úteis. Em particular, podemos citar a transformada discreta de Fourier (DFT), a transformada de Karhunen-Loève (KLT) e a trans- formada discreta do cosseno (DCT) como as transformadas mais relevantes no contexto de processamento de sinais e imagens. Embora a relevância do uso dessas transformadas tenha sido amplamente corroborado em diversos estudos, os custos computacionais necessários para suas implementações podem se tornar proibitivos em contextos em que há grande quantidade de dados e/ou a demanda por dispositivos de baixa complexidade. Nesse sentido, algoritmos rápidos podem ser uma solução para a redução das operações aritméticas necessárias para a computação das transformadas. Porém, ainda é preciso lidar com a aritmética de ponto flutuante. Dessa forma, diversas aproximações matriciais de baixa complexidade vêm sendo propostas, como sendo uma alternativa de baixo custo para o cômputo destas transformadas. A presente tese está dividida em duas partes. Na primeira parte, propomos diversas classes de aproximações de baixa complexidade para a KLT e para a DCT, algoritmos rápidos, e demonstramos sua usabilidade no contexto de processamento de imagens. Na segunda parte da tese, apresentamos classes de aproximação para a DFT e sua aplicabilidade em problemas de inferência estatística, como no contexto de detecção de sinais. Dos resultados obtidos, podemos concluir que as aproximações de baixa complexidade para as transformadas podem ser consideradas excelentes alternativas em contextos em que há uma quantidade massiva de dados a ser processada ou no caso de implementação em hardware de baixo consumo.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCINTRA, Renato José de SobralBAYER, Fábio Marianohttp://lattes.cnpq.br/2359539245136931http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949RADUNZ, Anabeth Petry2023-07-05T13:57:54Z2023-07-05T13:57:54Z2023-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51394enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-07-06T05:34:10Zoai:repositorio.ufpe.br:123456789/51394Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-07-06T05:34:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| title |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| spellingShingle |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference RADUNZ, Anabeth Petry Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
| title_short |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| title_full |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| title_fullStr |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| title_full_unstemmed |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| title_sort |
Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference |
| author |
RADUNZ, Anabeth Petry |
| author_facet |
RADUNZ, Anabeth Petry |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
CINTRA, Renato José de Sobral BAYER, Fábio Mariano http://lattes.cnpq.br/2359539245136931 http://lattes.cnpq.br/7413544381333504 http://lattes.cnpq.br/9904863693302949 |
| dc.contributor.author.fl_str_mv |
RADUNZ, Anabeth Petry |
| dc.subject.por.fl_str_mv |
Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
| topic |
Estatística aplicada Transformadas discretas Transformadas aproximadas de baixa complexidade Compressão de imagens |
| description |
Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware. |
| publishDate |
2023 |
| dc.date.none.fl_str_mv |
2023-07-05T13:57:54Z 2023-07-05T13:57:54Z 2023-03-31 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023. https://repositorio.ufpe.br/handle/123456789/51394 |
| identifier_str_mv |
RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023. |
| url |
https://repositorio.ufpe.br/handle/123456789/51394 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/embargoedAccess |
| rights_invalid_str_mv |
http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
embargoedAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Estatistica |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041851755167744 |