Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference

Detalhes bibliográficos
Ano de defesa: 2023
Autor(a) principal: RADUNZ, Anabeth Petry
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso embargado
Idioma: eng
Instituição de defesa: Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufpe.br/handle/123456789/51394
Resumo: Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.
id UFPE_e33fd48d42e245a33de5777325ef9775
oai_identifier_str oai:repositorio.ufpe.br:123456789/51394
network_acronym_str UFPE
network_name_str Repositório Institucional da UFPE
repository_id_str
spelling Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inferenceEstatística aplicadaTransformadas discretasTransformadas aproximadas de baixa complexidadeCompressão de imagensDiscrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.FACEPETransformadas discretas desempenham um papel importante no contexto de processamento de sinais. Elas são ferramentas pivotais pois permitem analisar e interpretar dados no domínio das transformadas, que frequentemente revelam padrões úteis. Em particular, podemos citar a transformada discreta de Fourier (DFT), a transformada de Karhunen-Loève (KLT) e a trans- formada discreta do cosseno (DCT) como as transformadas mais relevantes no contexto de processamento de sinais e imagens. Embora a relevância do uso dessas transformadas tenha sido amplamente corroborado em diversos estudos, os custos computacionais necessários para suas implementações podem se tornar proibitivos em contextos em que há grande quantidade de dados e/ou a demanda por dispositivos de baixa complexidade. Nesse sentido, algoritmos rápidos podem ser uma solução para a redução das operações aritméticas necessárias para a computação das transformadas. Porém, ainda é preciso lidar com a aritmética de ponto flutuante. Dessa forma, diversas aproximações matriciais de baixa complexidade vêm sendo propostas, como sendo uma alternativa de baixo custo para o cômputo destas transformadas. A presente tese está dividida em duas partes. Na primeira parte, propomos diversas classes de aproximações de baixa complexidade para a KLT e para a DCT, algoritmos rápidos, e demonstramos sua usabilidade no contexto de processamento de imagens. Na segunda parte da tese, apresentamos classes de aproximação para a DFT e sua aplicabilidade em problemas de inferência estatística, como no contexto de detecção de sinais. Dos resultados obtidos, podemos concluir que as aproximações de baixa complexidade para as transformadas podem ser consideradas excelentes alternativas em contextos em que há uma quantidade massiva de dados a ser processada ou no caso de implementação em hardware de baixo consumo.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em EstatisticaCINTRA, Renato José de SobralBAYER, Fábio Marianohttp://lattes.cnpq.br/2359539245136931http://lattes.cnpq.br/7413544381333504http://lattes.cnpq.br/9904863693302949RADUNZ, Anabeth Petry2023-07-05T13:57:54Z2023-07-05T13:57:54Z2023-03-31info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfRADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.https://repositorio.ufpe.br/handle/123456789/51394enghttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/embargoedAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2023-07-06T05:34:10Zoai:repositorio.ufpe.br:123456789/51394Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212023-07-06T05:34:10Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false
dc.title.none.fl_str_mv Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
spellingShingle Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
RADUNZ, Anabeth Petry
Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
title_short Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_full Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_fullStr Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_full_unstemmed Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
title_sort Low-complexity approximations for discrete transforms : design, fast algorithms, image coding, and use as a tool in statistical inference
author RADUNZ, Anabeth Petry
author_facet RADUNZ, Anabeth Petry
author_role author
dc.contributor.none.fl_str_mv CINTRA, Renato José de Sobral
BAYER, Fábio Mariano
http://lattes.cnpq.br/2359539245136931
http://lattes.cnpq.br/7413544381333504
http://lattes.cnpq.br/9904863693302949
dc.contributor.author.fl_str_mv RADUNZ, Anabeth Petry
dc.subject.por.fl_str_mv Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
topic Estatística aplicada
Transformadas discretas
Transformadas aproximadas de baixa complexidade
Compressão de imagens
description Discrete transforms play an important role in the context of signal processing. They are pivotal tools because they allow us to analyze and interpret data in the domain of transforms, which often reveal useful patterns. In particular, we can mention the discrete Fourier transform (DFT), the Karhunen-Loève transform (KLT) and the discrete cosine transform (DCT) as the most relevant transforms in the context of signal and image processing. Although the relevance of using these transforms has been widely corroborated in several studies, the computational costs required for their implementations can become prohibitive in contexts where we have large amounts of data and/or demand for low-complexity devices. In this context, fast algorithms can be a solution for the reduction of arithmetic operations necessary for computing the transforms. However, it is still necessary to deal with the floating-point arithmetic. Thus, several low-complexity transform approximations have been developed, as a low-cost alternative for computing these transforms. This thesis is divided into two parts. In the first part, we propose several classes of low complexity approximations for the KLT and the DCT, fast algorithms, and demonstrate their usability in the context of image processing. In the second part of the thesis, we present approximation classes for the DFT and their applicability in problems of statistical inference, as in the context of signal detection. From the results obtained, we can conclude that the low complexity approximations for the transforms can be considered excellent alternatives in contexts where there is a massive amount of data to be processed or in the case of implementation in low-consumption hardware.
publishDate 2023
dc.date.none.fl_str_mv 2023-07-05T13:57:54Z
2023-07-05T13:57:54Z
2023-03-31
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.
https://repositorio.ufpe.br/handle/123456789/51394
identifier_str_mv RADUNZ, Anabeth Petry. Low-complexity approximations for discrete transforms: design, fast algorithms, image coding, and use as a tool in statistical inference. 2023. Tese (Doutorado em Estatística) – Universidade Federal de Pernambuco, Recife, 2023.
url https://repositorio.ufpe.br/handle/123456789/51394
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
info:eu-repo/semantics/embargoedAccess
rights_invalid_str_mv http://creativecommons.org/licenses/by-nc-nd/3.0/br/
eu_rights_str_mv embargoedAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
publisher.none.fl_str_mv Universidade Federal de Pernambuco
UFPE
Brasil
Programa de Pos Graduacao em Estatistica
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPE
instname:Universidade Federal de Pernambuco (UFPE)
instacron:UFPE
instname_str Universidade Federal de Pernambuco (UFPE)
instacron_str UFPE
institution UFPE
reponame_str Repositório Institucional da UFPE
collection Repositório Institucional da UFPE
repository.name.fl_str_mv Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)
repository.mail.fl_str_mv attena@ufpe.br
_version_ 1856041851755167744