A -model with ∞-groupoid structure based in the Scott’s -model D∞
| Ano de defesa: | 2020 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal de Pernambuco
UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufpe.br/handle/123456789/38554 |
Resumo: | The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus. |
| id |
UFPE_ea90c2f2b3dfa1a37040914200874b97 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufpe.br:123456789/38554 |
| network_acronym_str |
UFPE |
| network_name_str |
Repositório Institucional da UFPE |
| repository_id_str |
|
| spelling |
A -model with ∞-groupoid structure based in the Scott’s -model D∞Teoria da computaçãoCálculo lambdaThe lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus.O cálculo lambda é uma linguagem de programação universal que representa as funções computáveis do ponto de vista das funções como regra, que permitem a avaliação de uma função em qualquer outra função. Essa linguagem pode ser vista como uma teoria, com certos axiomas e regras de inferência pré-estabelecidos, que podem ser representados por modelos. Dana Scott propôs o primeiro modelo não-trivial do cálculo lambda extensional, conhecido como ∞, para representar os -termos como as funções típicas da teoria dos conjuntos, onde não é permitido avaliar uma função sobre si mesmo. Esta tese propõe a construção de um ∞-groupoid a partir de qualquer modelo lambda dotado de uma topologia. Aplicamos esta construção para o caso particular ∞ e observamos que a topologia Scott não fornece informações relevantes sobre a relação entre equivalências superiores. Isso motiva uma nova linha de pesquisa focada na exploração de -modelos com a estrutura de um ∞-groupoide não trivial para generalizar as provas de conversão de termos (e.g., -igualdade, -equalidade) à provas do ordem superior em -calculus.Universidade Federal de PernambucoUFPEBrasilPrograma de Pos Graduacao em Ciencia da ComputacaoQUEIROZ, José Guerra Barretto dehttp://lattes.cnpq.br/1825502153580661MARTÍNEZ RIVILLAS, Daniel Orlando2020-11-09T21:32:03Z2020-11-09T21:32:03Z2020-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfMARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020.https://repositorio.ufpe.br/handle/123456789/38554engAttribution-NonCommercial-NoDerivs 3.0 Brazilhttp://creativecommons.org/licenses/by-nc-nd/3.0/br/info:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPEinstname:Universidade Federal de Pernambuco (UFPE)instacron:UFPE2020-11-10T05:16:17Zoai:repositorio.ufpe.br:123456789/38554Repositório InstitucionalPUBhttps://repositorio.ufpe.br/oai/requestattena@ufpe.bropendoar:22212020-11-10T05:16:17Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE)false |
| dc.title.none.fl_str_mv |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| title |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| spellingShingle |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ MARTÍNEZ RIVILLAS, Daniel Orlando Teoria da computação Cálculo lambda |
| title_short |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| title_full |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| title_fullStr |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| title_full_unstemmed |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| title_sort |
A -model with ∞-groupoid structure based in the Scott’s -model D∞ |
| author |
MARTÍNEZ RIVILLAS, Daniel Orlando |
| author_facet |
MARTÍNEZ RIVILLAS, Daniel Orlando |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
QUEIROZ, José Guerra Barretto de http://lattes.cnpq.br/1825502153580661 |
| dc.contributor.author.fl_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando |
| dc.subject.por.fl_str_mv |
Teoria da computação Cálculo lambda |
| topic |
Teoria da computação Cálculo lambda |
| description |
The lambda calculus is a universal programming language that represents the functions computable from the point of view of the functions as a rule, that allow the evaluation of a function on any other function. This language can be seen as a theory, with certain pre-established axioms and inference rules, which can be represented by models. Dana Scott proposed the first non-trivial model of the extensional lambda calculus, known as ∞, in order to represent the -terms as the typical functions of set theory, where it is not allowed to evaluate a function about itself. This thesis propose a construction of an ∞-groupoid from any lambda model endowed with a topology. We apply this construction for the particular case ∞ and we observe that the Scott topology does not provide relevant information about of the relation between higher equivalences. This motivates the search for a new line of research focused on the exploration of -models with the structure of a non-trivial ∞-groupoid to generalize the proofs of term conversion (e.g., -equality, -equality) to higher proof in -calculus. |
| publishDate |
2020 |
| dc.date.none.fl_str_mv |
2020-11-09T21:32:03Z 2020-11-09T21:32:03Z 2020-02-28 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. https://repositorio.ufpe.br/handle/123456789/38554 |
| identifier_str_mv |
MARTÍNEZ RIVILLAS, Daniel Orlando. A -model with ∞-groupoid structure based in the Scott’s -model D∞. 2020. Dissertação (Mestrado em Ciência da Computação) – Universidade Federal de Pernambuco, Recife, 2020. |
| url |
https://repositorio.ufpe.br/handle/123456789/38554 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Attribution-NonCommercial-NoDerivs 3.0 Brazil http://creativecommons.org/licenses/by-nc-nd/3.0/br/ |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| publisher.none.fl_str_mv |
Universidade Federal de Pernambuco UFPE Brasil Programa de Pos Graduacao em Ciencia da Computacao |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFPE instname:Universidade Federal de Pernambuco (UFPE) instacron:UFPE |
| instname_str |
Universidade Federal de Pernambuco (UFPE) |
| instacron_str |
UFPE |
| institution |
UFPE |
| reponame_str |
Repositório Institucional da UFPE |
| collection |
Repositório Institucional da UFPE |
| repository.name.fl_str_mv |
Repositório Institucional da UFPE - Universidade Federal de Pernambuco (UFPE) |
| repository.mail.fl_str_mv |
attena@ufpe.br |
| _version_ |
1856041996728139776 |