Energy-efficient noC-based systems for real-time multimedia applications using approximate computing

Detalhes bibliográficos
Ano de defesa: 2020
Autor(a) principal: Penny, Wagner Ishizaka
Orientador(a): Zatt, Bruno
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal de Pelotas
Programa de Pós-Graduação: Programa de Pós-Graduação em Computação
Departamento: Centro de Desenvolvimento Tecnológico
País: Brasil
Palavras-chave em Português:
NoC
Área do conhecimento CNPq:
Link de acesso: http://guaiaca.ufpel.edu.br/handle/prefix/7248
Resumo: This thesis presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). SApp-NoC architecture is organized using neighbor Tiles, sized to enable scalability across distinct throughput demands - depending on video resolution and frame rate - whereas reaching real-time processing for 4K UHD videos at 120 fps. Approximate computing is deployed using four types of processing elements implemented as dedicated hardware accelerators with distinct levels of approximation, designed based on the application error resiliency analysis. Therefore, two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). At design time, video encoder statistical behavior is used to propose algorithms aiming the tiling definition, to properly size the NoC and to instantiate and place the approximate processing elements within SApp-NoC. At run-time, our application-aware dynamic task-mapping algorithm guarantees real-time processing while reducing energy consumption with low QoS degradation. When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. A set of schedulability analysis is proposed in order to guarantee the meeting of timing constraints at typical workload scenarios. Moreover, our system design methodology is suitable to be applied to other error-resilient processing kernels targeting energy saving with high throughput requirements.
id UFPL_31850d34dba2491a61757997e5d42419
oai_identifier_str oai:guaiaca.ufpel.edu.br:prefix/7248
network_acronym_str UFPL
network_name_str Repositório Institucional da UFPel - Guaiaca
repository_id_str
spelling 2021-03-09T23:23:36Z2021-03-09T23:23:36Z2020-12-14PENNY, Wagner Ishizaka. Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications using Approximate Computing. Advisor: Bruno Zatt. 2021. 142 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2021.http://guaiaca.ufpel.edu.br/handle/prefix/7248This thesis presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). SApp-NoC architecture is organized using neighbor Tiles, sized to enable scalability across distinct throughput demands - depending on video resolution and frame rate - whereas reaching real-time processing for 4K UHD videos at 120 fps. Approximate computing is deployed using four types of processing elements implemented as dedicated hardware accelerators with distinct levels of approximation, designed based on the application error resiliency analysis. Therefore, two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). At design time, video encoder statistical behavior is used to propose algorithms aiming the tiling definition, to properly size the NoC and to instantiate and place the approximate processing elements within SApp-NoC. At run-time, our application-aware dynamic task-mapping algorithm guarantees real-time processing while reducing energy consumption with low QoS degradation. When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. A set of schedulability analysis is proposed in order to guarantee the meeting of timing constraints at typical workload scenarios. Moreover, our system design methodology is suitable to be applied to other error-resilient processing kernels targeting energy saving with high throughput requirements.Esta tese apresenta um sistema de tempo real energeticamente eficiente, baseado em NoC, para aplicações multimídia utilizando computação aproximada. O sistema de processamento de vídeo proposto, denominado SApp-NoC, é eficiente tanto em energia quanto qualidade (QoS), empregando uma arquitetura NoC escalável composta por elementos de processamento projetados para acelerar a Estimação de Movimento Fracionária (FME) do HEVC. A arquitetura SApp-NoC é organizada usando blocos vizinhos, dimensionada para permitir escalabilidade em diversos cenários de demanda - dependendo da resolução do vídeo e da taxa de quadros - atingindo desempenho para o processamento em tempo real de vídeos UHD 4K a 120 fps. A computação aproximada é aplicada utilizando quatro tipos de elementos de processamento, implementados como aceleradores de hardware dedicados com níveis distintos de aproximação, projetados com base na resiliência a erros da aplicação. Dessa forma, duas soluções são propostas: HSApp-NoC (Heuristc-based SApp-NoC), baseada em heurísticas, e MLSApp-NoC (Machine Learning-based SApp-NoC), baseada em aprendizado de máquina. Em tempo de projeto, o comportamento estatístico do codificador de vídeo é utilizado para dividir e dimensionar a NoC adequadamente, e, também, para instanciar e posicionar os elementos de processamento aproximados na SApp-NoC. Em tempo de execução, um algoritmo de mapeamento de tarefas dinâmico baseado na aplicação garante o processamento em tempo real enquanto reduz o consumo de energia com baixa degradação de QoS. Quando comparado a uma solução precisa de processamento de vídeos 4K a 120 fps, HSApp-NoC e MLSApp-NoC são capazes de reduzir em cerca de 48,19% e 31,81% o consumo de energia, com uma pequena redução de qualidade de 2,74% e 1,09%, respectivamente. Um conjunto de análises de escalonabilidade é proposto a fim de garantir o atendimento das restrições de tempo em cenários típicos de carga de trabalho. Além disso, nossa metodologia de projeto de sistema é adequada para ser aplicada a outros kernels de processamento resilientes a erros, visando economia de energia em aplicações com alta demanda em desempenho.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESporUniversidade Federal de PelotasPrograma de Pós-Graduação em ComputaçãoUFPelBrasilCentro de Desenvolvimento TecnológicoCNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAOComputaçãoNoCApproximate computingMachine learningVideo codingHardware accelerationComputação aproximadaAprendizagem de máquinaCodificação de vídeoAceleração em hardwareEnergy-efficient noC-based systems for real-time multimedia applications using approximate computinginfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesishttp://lattes.cnpq.br/8251926321102019http://lattes.cnpq.br/3163503973303585Porto, Marcelo Schiavonhttp://lattes.cnpq.br/5741927083446578Zatt, BrunoPenny, Wagner Ishizakainfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFPel - Guaiacainstname:Universidade Federal de Pelotas (UFPEL)instacron:UFPELTEXTTese_Doutorado_Wagner_Penny_.pdf.txtTese_Doutorado_Wagner_Penny_.pdf.txtExtracted texttext/plain282532http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/6/Tese_Doutorado_Wagner_Penny_.pdf.txt05ad9fca7b291628fc23619489a0cb95MD56open accessTHUMBNAILTese_Doutorado_Wagner_Penny_.pdf.jpgTese_Doutorado_Wagner_Penny_.pdf.jpgGenerated Thumbnailimage/jpeg1264http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/7/Tese_Doutorado_Wagner_Penny_.pdf.jpgb77308990f00b385cf35ff59033ebc7eMD57open accessORIGINALTese_Doutorado_Wagner_Penny_.pdfTese_Doutorado_Wagner_Penny_.pdfapplication/pdf29384553http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/1/Tese_Doutorado_Wagner_Penny_.pdfba5822d850f5083417e0ccab8e92bcb5MD51open accessCC-LICENSElicense_urllicense_urltext/plain; charset=utf-849http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/2/license_url4afdbb8c545fd630ea7db775da747b2fMD52open accesslicense_textlicense_texttext/html; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/3/license_textd41d8cd98f00b204e9800998ecf8427eMD53open accesslicense_rdflicense_rdfapplication/rdf+xml; charset=utf-80http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/4/license_rdfd41d8cd98f00b204e9800998ecf8427eMD54open accessLICENSElicense.txtlicense.txttext/plain; charset=utf-81866http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/5/license.txt43cd690d6a359e86c1fe3d5b7cba0c9bMD55open accessprefix/72482023-07-13 03:35:14.769open accessoai:guaiaca.ufpel.edu.br:prefix/7248TElDRU7Dh0EgREUgRElTVFJJQlVJw4fDg08gTsODTy1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YcOnw6NvIGRlc3RhIGxpY2Vuw6dhLCB2b2PDqiAobyBhdXRvciAoZXMpIG91IG8gdGl0dWxhciBkb3MgZGlyZWl0b3MgZGUgYXV0b3IpIGNvbmNlZGUgYW8gUmVwb3NpdMOzcmlvIApJbnN0aXR1Y2lvbmFsIG8gZGlyZWl0byBuw6NvLWV4Y2x1c2l2byBkZSByZXByb2R1emlyLCAgdHJhZHV6aXIgKGNvbmZvcm1lIGRlZmluaWRvIGFiYWl4byksIGUvb3UgZGlzdHJpYnVpciBhIApzdWEgcHVibGljYcOnw6NvIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyw7RuaWNvIGUgZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIApmb3JtYXRvcyDDoXVkaW8gb3UgdsOtZGVvLgoKVm9jw6ogY29uY29yZGEgcXVlIG8gRGVwb3NpdGEgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZcO6ZG8sIHRyYW5zcG9yIGEgc3VhIHB1YmxpY2HDp8OjbyBwYXJhIHF1YWxxdWVyIG1laW8gb3UgZm9ybWF0byAKcGFyYSBmaW5zIGRlIHByZXNlcnZhw6fDo28uCgpWb2PDqiB0YW1iw6ltIGNvbmNvcmRhIHF1ZSBvIERlcG9zaXRhIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGPDs3BpYSBkZSBzdWEgcHVibGljYcOnw6NvIHBhcmEgZmlucyBkZSBzZWd1cmFuw6dhLCBiYWNrLXVwIAplIHByZXNlcnZhw6fDo28uCgpWb2PDqiBkZWNsYXJhIHF1ZSBhIHN1YSBwdWJsaWNhw6fDo28gw6kgb3JpZ2luYWwgZSBxdWUgdm9jw6ogdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgbmVzdGEgbGljZW7Dp2EuIApWb2PDqiB0YW1iw6ltIGRlY2xhcmEgcXVlIG8gZGVww7NzaXRvIGRhIHN1YSBwdWJsaWNhw6fDo28gbsOjbywgcXVlIHNlamEgZGUgc2V1IGNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgCmRlIG5pbmd1w6ltLgoKQ2FzbyBhIHN1YSBwdWJsaWNhw6fDo28gY29udGVuaGEgbWF0ZXJpYWwgcXVlIHZvY8OqIG7Do28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jw6ogZGVjbGFyYSBxdWUgCm9idGV2ZSBhIHBlcm1pc3PDo28gaXJyZXN0cml0YSBkbyBkZXRlbnRvciBkb3MgZGlyZWl0b3MgYXV0b3JhaXMgcGFyYSBjb25jZWRlciBhbyBEZXBvc2l0YSBvcyBkaXJlaXRvcyBhcHJlc2VudGFkb3MgCm5lc3RhIGxpY2Vuw6dhLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3TDoSBjbGFyYW1lbnRlIGlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIApvdSBubyBjb250ZcO6ZG8gZGEgcHVibGljYcOnw6NvIG9yYSBkZXBvc2l0YWRhLgoKQ0FTTyBBIFBVQkxJQ0HDh8ODTyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0PDjU5JTyBPVSBBUE9JTyBERSBVTUEgQUfDik5DSUEgREUgRk9NRU5UTyBPVSBPVVRSTyAKT1JHQU5JU01PLCBWT0PDiiBERUNMQVJBIFFVRSBSRVNQRUlUT1UgVE9ET1MgRSBRVUFJU1FVRVIgRElSRUlUT1MgREUgUkVWSVPDg08gQ09NTyBUQU1Cw4lNIEFTIERFTUFJUyBPQlJJR0HDh8OVRVMgCkVYSUdJREFTIFBPUiBDT05UUkFUTyBPVSBBQ09SRE8uCgpPIERlcG9zaXRhIHNlIGNvbXByb21ldGUgYSBpZGVudGlmaWNhciBjbGFyYW1lbnRlIG8gc2V1IG5vbWUgKHMpIG91IG8ocykgbm9tZShzKSBkbyhzKSBkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIAphdXRvcmFpcyBkYSBwdWJsaWNhw6fDo28sIGUgbsOjbyBmYXLDoSBxdWFscXVlciBhbHRlcmHDp8OjbywgYWzDqW0gZGFxdWVsYXMgY29uY2VkaWRhcyBwb3IgZXN0YSBsaWNlbsOnYS4KRepositório InstitucionalPUBhttp://repositorio.ufpel.edu.br/oai/requestrippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.bropendoar:2023-07-13T06:35:14Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)false
dc.title.pt_BR.fl_str_mv Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
title Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
spellingShingle Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
Penny, Wagner Ishizaka
CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Computação
NoC
Approximate computing
Machine learning
Video coding
Hardware acceleration
Computação aproximada
Aprendizagem de máquina
Codificação de vídeo
Aceleração em hardware
title_short Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
title_full Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
title_fullStr Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
title_full_unstemmed Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
title_sort Energy-efficient noC-based systems for real-time multimedia applications using approximate computing
author Penny, Wagner Ishizaka
author_facet Penny, Wagner Ishizaka
author_role author
dc.contributor.authorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/8251926321102019
dc.contributor.advisorLattes.pt_BR.fl_str_mv http://lattes.cnpq.br/3163503973303585
dc.contributor.advisor-co1.fl_str_mv Porto, Marcelo Schiavon
dc.contributor.advisor-co1Lattes.fl_str_mv http://lattes.cnpq.br/5741927083446578
dc.contributor.advisor1.fl_str_mv Zatt, Bruno
dc.contributor.author.fl_str_mv Penny, Wagner Ishizaka
contributor_str_mv Porto, Marcelo Schiavon
Zatt, Bruno
dc.subject.cnpq.fl_str_mv CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
topic CNPQ::CIENCIAS EXATAS E DA TERRA::CIENCIA DA COMPUTACAO::METODOLOGIA E TECNICAS DA COMPUTACAO
Computação
NoC
Approximate computing
Machine learning
Video coding
Hardware acceleration
Computação aproximada
Aprendizagem de máquina
Codificação de vídeo
Aceleração em hardware
dc.subject.por.fl_str_mv Computação
NoC
Approximate computing
Machine learning
Video coding
Hardware acceleration
Computação aproximada
Aprendizagem de máquina
Codificação de vídeo
Aceleração em hardware
description This thesis presents an energy-efficient NoC-based system for real-time multimedia applications employing approximate computing. The proposed video processing system, called SApp-NoC, is efficient in both energy and quality (QoS), employing a scalable NoC architecture composed of processing elements designed to accelerate the HEVC Fractional Motion Estimation (FME). SApp-NoC architecture is organized using neighbor Tiles, sized to enable scalability across distinct throughput demands - depending on video resolution and frame rate - whereas reaching real-time processing for 4K UHD videos at 120 fps. Approximate computing is deployed using four types of processing elements implemented as dedicated hardware accelerators with distinct levels of approximation, designed based on the application error resiliency analysis. Therefore, two solutions are proposed: HSApp-NoC (Heuristc-based SApp-NoC), and MLSApp-NoC (Machine Learning-based SApp-NoC). At design time, video encoder statistical behavior is used to propose algorithms aiming the tiling definition, to properly size the NoC and to instantiate and place the approximate processing elements within SApp-NoC. At run-time, our application-aware dynamic task-mapping algorithm guarantees real-time processing while reducing energy consumption with low QoS degradation. When compared to a precise solution processing 4K videos at 120 fps, HSApp-NoC and MLSApp-NoC reduce about 48.19% and 31.81% the energy consumption, at small quality reduction of 2.74% and 1.09%, respectively. A set of schedulability analysis is proposed in order to guarantee the meeting of timing constraints at typical workload scenarios. Moreover, our system design methodology is suitable to be applied to other error-resilient processing kernels targeting energy saving with high throughput requirements.
publishDate 2020
dc.date.issued.fl_str_mv 2020-12-14
dc.date.accessioned.fl_str_mv 2021-03-09T23:23:36Z
dc.date.available.fl_str_mv 2021-03-09T23:23:36Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv PENNY, Wagner Ishizaka. Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications using Approximate Computing. Advisor: Bruno Zatt. 2021. 142 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2021.
dc.identifier.uri.fl_str_mv http://guaiaca.ufpel.edu.br/handle/prefix/7248
identifier_str_mv PENNY, Wagner Ishizaka. Energy-Efficient NoC-Based Systems for Real-Time Multimedia Applications using Approximate Computing. Advisor: Bruno Zatt. 2021. 142 f. Thesis (Doctorate in Computer Science) – Technology Development Center, Federal University of Pelotas, Pelotas, 2021.
url http://guaiaca.ufpel.edu.br/handle/prefix/7248
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Computação
dc.publisher.initials.fl_str_mv UFPel
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Centro de Desenvolvimento Tecnológico
publisher.none.fl_str_mv Universidade Federal de Pelotas
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFPel - Guaiaca
instname:Universidade Federal de Pelotas (UFPEL)
instacron:UFPEL
instname_str Universidade Federal de Pelotas (UFPEL)
instacron_str UFPEL
institution UFPEL
reponame_str Repositório Institucional da UFPel - Guaiaca
collection Repositório Institucional da UFPel - Guaiaca
bitstream.url.fl_str_mv http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/6/Tese_Doutorado_Wagner_Penny_.pdf.txt
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/7/Tese_Doutorado_Wagner_Penny_.pdf.jpg
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/1/Tese_Doutorado_Wagner_Penny_.pdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/2/license_url
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/3/license_text
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/4/license_rdf
http://guaiaca.ufpel.edu.br/xmlui/bitstream/prefix/7248/5/license.txt
bitstream.checksum.fl_str_mv 05ad9fca7b291628fc23619489a0cb95
b77308990f00b385cf35ff59033ebc7e
ba5822d850f5083417e0ccab8e92bcb5
4afdbb8c545fd630ea7db775da747b2f
d41d8cd98f00b204e9800998ecf8427e
d41d8cd98f00b204e9800998ecf8427e
43cd690d6a359e86c1fe3d5b7cba0c9b
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFPel - Guaiaca - Universidade Federal de Pelotas (UFPEL)
repository.mail.fl_str_mv rippel@ufpel.edu.br || repositorio@ufpel.edu.br || aline.batista@ufpel.edu.br
_version_ 1856426132356726784