Accelerating dual dynamic programming applied to hydrothermal coordination problems
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Universidade Federal do Rio de Janeiro
Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | http://hdl.handle.net/11422/13072 |
Resumo: | Dual Dynamic Programming (DDP) is a decomposition strategy capable of solving high-dimension multistage stochastic optimization problems, which is applied in several fields of study. The DDP method is widely used in hydrothermal coordination planning (HTC) problems for power generation systems - mainly in predominantly hydro power systems, such as in Brazil, Norway and Chile - to define a minimum cost dispatch of power generation, taking into account some uncertainties in the system, such as the natural inflows to the reservoirs. The larger is the system, the more complex is the model, however more expensive is to solve the problem. This work presents new strategies to accelerate DDP method, which consist in local convergence tests in scenario sub-trees, as well as analysis of the stability in the values of state variables along the nodes, to avoid unnecessary forward and backward passes and therefore saving CPU time and memory requirements. Another efficient way to reduce time proposed in this work is a novel asynchronous parallel scheme based on DDP, as well as a partial-asynchronous variant. Such strategies make a better use of the available resources by overcoming some drawbacks of traditional DDP parallel algorithms, which may be too restrictive depending on the structure of the scenario tree. The efficiency of the proposed strategies is shown for a HTC problem of the real large-scale Brazilian system. |
| id |
UFRJ_545517418c6c7349fd7a5be4c5b87d91 |
|---|---|
| oai_identifier_str |
oai:pantheon.ufrj.br:11422/13072 |
| network_acronym_str |
UFRJ |
| network_name_str |
Repositório Institucional da UFRJ |
| repository_id_str |
|
| spelling |
Accelerating dual dynamic programming applied to hydrothermal coordination problemsTécnicas para acelerar a programação dinâmica dual aplicada a problemas de coordenação hidrotérmicaDual Dynamic ProgrammingMultistage stochastic optimizationHydrothermal planningCNPQ::ENGENHARIASDual Dynamic Programming (DDP) is a decomposition strategy capable of solving high-dimension multistage stochastic optimization problems, which is applied in several fields of study. The DDP method is widely used in hydrothermal coordination planning (HTC) problems for power generation systems - mainly in predominantly hydro power systems, such as in Brazil, Norway and Chile - to define a minimum cost dispatch of power generation, taking into account some uncertainties in the system, such as the natural inflows to the reservoirs. The larger is the system, the more complex is the model, however more expensive is to solve the problem. This work presents new strategies to accelerate DDP method, which consist in local convergence tests in scenario sub-trees, as well as analysis of the stability in the values of state variables along the nodes, to avoid unnecessary forward and backward passes and therefore saving CPU time and memory requirements. Another efficient way to reduce time proposed in this work is a novel asynchronous parallel scheme based on DDP, as well as a partial-asynchronous variant. Such strategies make a better use of the available resources by overcoming some drawbacks of traditional DDP parallel algorithms, which may be too restrictive depending on the structure of the scenario tree. The efficiency of the proposed strategies is shown for a HTC problem of the real large-scale Brazilian system.A Programação dinâmica Dual (PDD) é uma estratégia de decomposição capaz de resolver grandes problemas de otimização estocástica multi-estágio, que tem aplicação em diversas áreas de estudo. A PDD é amplamente utilizada no planejamento hidrotérmico de sistemas de energia elétrica, principalmente em sistemas predominantemente hidroelétricos, para definir um despacho de operação de mínimo custo, considerando incertezas em algumas variáveis do problema, notadamente as afluências às usinas hidroelétricas. Quanto maior é o sistema, mais complexo é o modelo que o representa, o que torna mais caro computacionalmente resolver o problema. Este trabalho apresenta novas estratégias para acelerar o método da PDD, que envolvem um teste de convergência local nas sub-árvores de cenários, assim como uma análise de estabilidade das variáveis de estado, para evitar operações forward e backward - intrínsecas do método de PDD - desnecessárias e economizar tempo de processamento e memória. Outra forma eficiente de redução de tempo proposta neste trabalho é um algoritmo de processamento paralelo assíncrono para a PDD, e uma variante assíncrona parcialmente paralela. Estas estratégias fazem melhor uso dos recursos disponíveis ao contornar algumas restrições de sincronismo da PDD que podem ser muito prejudiciais ao paralelismo. A eficiência das estratégias propostas é mostrada para problemas de planejamento hidrotérmicoUniversidade Federal do Rio de JaneiroBrasilInstituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de EngenhariaPrograma de Pós-Graduação em Engenharia de Sistemas e ComputaçãoUFRJSimonetti, Luidi Gelaberthttp://lattes.cnpq.br/9521646119786469http://lattes.cnpq.br/1714767321004003Diniz, André Luizhttp://lattes.cnpq.br/3266247626353829Leite, Laura Silvia Bahiense da SilvaAguiar, Alexandre Street dePinto, Roberto JoséSantos, Lílian Chaves Brandão dos2020-09-22T00:39:57Z2023-12-21T03:02:17Z2018-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesishttp://hdl.handle.net/11422/13072enginfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRJinstname:Universidade Federal do Rio de Janeiro (UFRJ)instacron:UFRJ2023-12-21T03:02:17Zoai:pantheon.ufrj.br:11422/13072Repositório InstitucionalPUBhttp://www.pantheon.ufrj.br/oai/requestpantheon@sibi.ufrj.bropendoar:2023-12-21T03:02:17Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ)false |
| dc.title.none.fl_str_mv |
Accelerating dual dynamic programming applied to hydrothermal coordination problems Técnicas para acelerar a programação dinâmica dual aplicada a problemas de coordenação hidrotérmica |
| title |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| spellingShingle |
Accelerating dual dynamic programming applied to hydrothermal coordination problems Santos, Lílian Chaves Brandão dos Dual Dynamic Programming Multistage stochastic optimization Hydrothermal planning CNPQ::ENGENHARIAS |
| title_short |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| title_full |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| title_fullStr |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| title_full_unstemmed |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| title_sort |
Accelerating dual dynamic programming applied to hydrothermal coordination problems |
| author |
Santos, Lílian Chaves Brandão dos |
| author_facet |
Santos, Lílian Chaves Brandão dos |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Simonetti, Luidi Gelabert http://lattes.cnpq.br/9521646119786469 http://lattes.cnpq.br/1714767321004003 Diniz, André Luiz http://lattes.cnpq.br/3266247626353829 Leite, Laura Silvia Bahiense da Silva Aguiar, Alexandre Street de Pinto, Roberto José |
| dc.contributor.author.fl_str_mv |
Santos, Lílian Chaves Brandão dos |
| dc.subject.por.fl_str_mv |
Dual Dynamic Programming Multistage stochastic optimization Hydrothermal planning CNPQ::ENGENHARIAS |
| topic |
Dual Dynamic Programming Multistage stochastic optimization Hydrothermal planning CNPQ::ENGENHARIAS |
| description |
Dual Dynamic Programming (DDP) is a decomposition strategy capable of solving high-dimension multistage stochastic optimization problems, which is applied in several fields of study. The DDP method is widely used in hydrothermal coordination planning (HTC) problems for power generation systems - mainly in predominantly hydro power systems, such as in Brazil, Norway and Chile - to define a minimum cost dispatch of power generation, taking into account some uncertainties in the system, such as the natural inflows to the reservoirs. The larger is the system, the more complex is the model, however more expensive is to solve the problem. This work presents new strategies to accelerate DDP method, which consist in local convergence tests in scenario sub-trees, as well as analysis of the stability in the values of state variables along the nodes, to avoid unnecessary forward and backward passes and therefore saving CPU time and memory requirements. Another efficient way to reduce time proposed in this work is a novel asynchronous parallel scheme based on DDP, as well as a partial-asynchronous variant. Such strategies make a better use of the available resources by overcoming some drawbacks of traditional DDP parallel algorithms, which may be too restrictive depending on the structure of the scenario tree. The efficiency of the proposed strategies is shown for a HTC problem of the real large-scale Brazilian system. |
| publishDate |
2018 |
| dc.date.none.fl_str_mv |
2018-07 2020-09-22T00:39:57Z 2023-12-21T03:02:17Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/11422/13072 |
| url |
http://hdl.handle.net/11422/13072 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
| publisher.none.fl_str_mv |
Universidade Federal do Rio de Janeiro Brasil Instituto Alberto Luiz Coimbra de Pós-Graduação e Pesquisa de Engenharia Programa de Pós-Graduação em Engenharia de Sistemas e Computação UFRJ |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRJ instname:Universidade Federal do Rio de Janeiro (UFRJ) instacron:UFRJ |
| instname_str |
Universidade Federal do Rio de Janeiro (UFRJ) |
| instacron_str |
UFRJ |
| institution |
UFRJ |
| reponame_str |
Repositório Institucional da UFRJ |
| collection |
Repositório Institucional da UFRJ |
| repository.name.fl_str_mv |
Repositório Institucional da UFRJ - Universidade Federal do Rio de Janeiro (UFRJ) |
| repository.mail.fl_str_mv |
pantheon@sibi.ufrj.br |
| _version_ |
1831773707313348608 |