Essays on Multistage Stochastic Programming applied to Asset Liability Management

Detalhes bibliográficos
Ano de defesa: 2018
Autor(a) principal: Oliveira, Alan Delgado de
Orientador(a): Filomena, Tiago Pascoal
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Não Informado pela instituição
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Palavras-chave em Inglês:
Link de acesso: http://hdl.handle.net/10183/179270
Resumo: A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários.
id URGS_ebf6ce1a26b59b3c1ee67f3a30e39286
oai_identifier_str oai:www.lume.ufrgs.br:10183/179270
network_acronym_str URGS
network_name_str Biblioteca Digital de Teses e Dissertações da UFRGS
repository_id_str
spelling Oliveira, Alan Delgado deFilomena, Tiago Pascoal2018-06-09T03:35:04Z2018http://hdl.handle.net/10183/179270001068986A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários.Uncertainty is a key element of reality. Thus, it becomes natural that the search for methods allows us to represent the unknown in mathematical terms. These problems originate a large class of probabilistic programs recognized as stochastic programming models. They are more realistic than deterministic ones, and their aim is to incorporate uncertainty into their definitions. This dissertation approaches the probabilistic problem class of multistage stochastic problems with chance constraints and joint-chance constraints. Initially, we propose a multistage stochastic asset liability management (ALM) model for a Brazilian pension fund industry. Our model is formalized in compliance with the Brazilian laws and policies. Next, given the relevance of the input parameters for these optimization models, we turn our attention to different sampling models, which compose the discretization process of these stochastic models. We check how these different sampling methodologies impact on the final solution and the portfolio allocation, outlining good options for ALM models. Finally, we propose a framework for the scenario-tree generation and optimization of multistage stochastic programming problems. Relying on the Knuth transform, we generate the scenario trees, taking advantage of the left-child, right-sibling representation, which makes the simulation more efficient in terms of time and the number of scenarios. We also formalize an ALM model reformulation based on implicit extensive form for the optimization model. This technique is designed by the definition of a filtration process with bundles, and coded with the support of an algebraic modeling language. The efficiency of this methodology is tested in a multistage stochastic ALM model with joint-chance constraints. Our framework makes it possible to reach the optimal solution for trees with a reasonable number of scenarios.application/pdfengProgramacao estocasticaFrameworkMultistage stochastic programmingChance constraint programmingScenario generationAsset liability managementEssays on Multistage Stochastic Programming applied to Asset Liability Managementinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2018doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001068986.pdf001068986.pdfTexto completo (inglês)application/pdf2216421http://www.lume.ufrgs.br/bitstream/10183/179270/1/001068986.pdf01a1a2977d6ec6027c6fa189c14f5f66MD51TEXT001068986.pdf.txt001068986.pdf.txtExtracted Texttext/plain222456http://www.lume.ufrgs.br/bitstream/10183/179270/2/001068986.pdf.txt5233a0fb43c540b1788fdb2fc52279b7MD5210183/1792702021-05-26 04:36:10.092524oai:www.lume.ufrgs.br:10183/179270Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:36:10Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false
dc.title.pt_BR.fl_str_mv Essays on Multistage Stochastic Programming applied to Asset Liability Management
title Essays on Multistage Stochastic Programming applied to Asset Liability Management
spellingShingle Essays on Multistage Stochastic Programming applied to Asset Liability Management
Oliveira, Alan Delgado de
Programacao estocastica
Framework
Multistage stochastic programming
Chance constraint programming
Scenario generation
Asset liability management
title_short Essays on Multistage Stochastic Programming applied to Asset Liability Management
title_full Essays on Multistage Stochastic Programming applied to Asset Liability Management
title_fullStr Essays on Multistage Stochastic Programming applied to Asset Liability Management
title_full_unstemmed Essays on Multistage Stochastic Programming applied to Asset Liability Management
title_sort Essays on Multistage Stochastic Programming applied to Asset Liability Management
author Oliveira, Alan Delgado de
author_facet Oliveira, Alan Delgado de
author_role author
dc.contributor.author.fl_str_mv Oliveira, Alan Delgado de
dc.contributor.advisor1.fl_str_mv Filomena, Tiago Pascoal
contributor_str_mv Filomena, Tiago Pascoal
dc.subject.por.fl_str_mv Programacao estocastica
Framework
topic Programacao estocastica
Framework
Multistage stochastic programming
Chance constraint programming
Scenario generation
Asset liability management
dc.subject.eng.fl_str_mv Multistage stochastic programming
Chance constraint programming
Scenario generation
Asset liability management
description A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários.
publishDate 2018
dc.date.accessioned.fl_str_mv 2018-06-09T03:35:04Z
dc.date.issued.fl_str_mv 2018
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://hdl.handle.net/10183/179270
dc.identifier.nrb.pt_BR.fl_str_mv 001068986
url http://hdl.handle.net/10183/179270
identifier_str_mv 001068986
dc.language.iso.fl_str_mv eng
language eng
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRGS
instname:Universidade Federal do Rio Grande do Sul (UFRGS)
instacron:UFRGS
instname_str Universidade Federal do Rio Grande do Sul (UFRGS)
instacron_str UFRGS
institution UFRGS
reponame_str Biblioteca Digital de Teses e Dissertações da UFRGS
collection Biblioteca Digital de Teses e Dissertações da UFRGS
bitstream.url.fl_str_mv http://www.lume.ufrgs.br/bitstream/10183/179270/1/001068986.pdf
http://www.lume.ufrgs.br/bitstream/10183/179270/2/001068986.pdf.txt
bitstream.checksum.fl_str_mv 01a1a2977d6ec6027c6fa189c14f5f66
5233a0fb43c540b1788fdb2fc52279b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)
repository.mail.fl_str_mv lume@ufrgs.br||lume@ufrgs.br
_version_ 1831316045449658368