Essays on Multistage Stochastic Programming applied to Asset Liability Management
| Ano de defesa: | 2018 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Não Informado pela instituição
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Palavras-chave em Inglês: | |
| Link de acesso: | http://hdl.handle.net/10183/179270 |
Resumo: | A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários. |
| id |
URGS_ebf6ce1a26b59b3c1ee67f3a30e39286 |
|---|---|
| oai_identifier_str |
oai:www.lume.ufrgs.br:10183/179270 |
| network_acronym_str |
URGS |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| repository_id_str |
|
| spelling |
Oliveira, Alan Delgado deFilomena, Tiago Pascoal2018-06-09T03:35:04Z2018http://hdl.handle.net/10183/179270001068986A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários.Uncertainty is a key element of reality. Thus, it becomes natural that the search for methods allows us to represent the unknown in mathematical terms. These problems originate a large class of probabilistic programs recognized as stochastic programming models. They are more realistic than deterministic ones, and their aim is to incorporate uncertainty into their definitions. This dissertation approaches the probabilistic problem class of multistage stochastic problems with chance constraints and joint-chance constraints. Initially, we propose a multistage stochastic asset liability management (ALM) model for a Brazilian pension fund industry. Our model is formalized in compliance with the Brazilian laws and policies. Next, given the relevance of the input parameters for these optimization models, we turn our attention to different sampling models, which compose the discretization process of these stochastic models. We check how these different sampling methodologies impact on the final solution and the portfolio allocation, outlining good options for ALM models. Finally, we propose a framework for the scenario-tree generation and optimization of multistage stochastic programming problems. Relying on the Knuth transform, we generate the scenario trees, taking advantage of the left-child, right-sibling representation, which makes the simulation more efficient in terms of time and the number of scenarios. We also formalize an ALM model reformulation based on implicit extensive form for the optimization model. This technique is designed by the definition of a filtration process with bundles, and coded with the support of an algebraic modeling language. The efficiency of this methodology is tested in a multistage stochastic ALM model with joint-chance constraints. Our framework makes it possible to reach the optimal solution for trees with a reasonable number of scenarios.application/pdfengProgramacao estocasticaFrameworkMultistage stochastic programmingChance constraint programmingScenario generationAsset liability managementEssays on Multistage Stochastic Programming applied to Asset Liability Managementinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisUniversidade Federal do Rio Grande do SulEscola de AdministraçãoPrograma de Pós-Graduação em AdministraçãoPorto Alegre, BR-RS2018doutoradoinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRGSinstname:Universidade Federal do Rio Grande do Sul (UFRGS)instacron:UFRGSORIGINAL001068986.pdf001068986.pdfTexto completo (inglês)application/pdf2216421http://www.lume.ufrgs.br/bitstream/10183/179270/1/001068986.pdf01a1a2977d6ec6027c6fa189c14f5f66MD51TEXT001068986.pdf.txt001068986.pdf.txtExtracted Texttext/plain222456http://www.lume.ufrgs.br/bitstream/10183/179270/2/001068986.pdf.txt5233a0fb43c540b1788fdb2fc52279b7MD5210183/1792702021-05-26 04:36:10.092524oai:www.lume.ufrgs.br:10183/179270Biblioteca Digital de Teses e Dissertaçõeshttps://lume.ufrgs.br/handle/10183/2PUBhttps://lume.ufrgs.br/oai/requestlume@ufrgs.br||lume@ufrgs.bropendoar:18532021-05-26T07:36:10Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS)false |
| dc.title.pt_BR.fl_str_mv |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| title |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| spellingShingle |
Essays on Multistage Stochastic Programming applied to Asset Liability Management Oliveira, Alan Delgado de Programacao estocastica Framework Multistage stochastic programming Chance constraint programming Scenario generation Asset liability management |
| title_short |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| title_full |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| title_fullStr |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| title_full_unstemmed |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| title_sort |
Essays on Multistage Stochastic Programming applied to Asset Liability Management |
| author |
Oliveira, Alan Delgado de |
| author_facet |
Oliveira, Alan Delgado de |
| author_role |
author |
| dc.contributor.author.fl_str_mv |
Oliveira, Alan Delgado de |
| dc.contributor.advisor1.fl_str_mv |
Filomena, Tiago Pascoal |
| contributor_str_mv |
Filomena, Tiago Pascoal |
| dc.subject.por.fl_str_mv |
Programacao estocastica Framework |
| topic |
Programacao estocastica Framework Multistage stochastic programming Chance constraint programming Scenario generation Asset liability management |
| dc.subject.eng.fl_str_mv |
Multistage stochastic programming Chance constraint programming Scenario generation Asset liability management |
| description |
A incerteza é um elemento fundamental da realidade. Então, torna-se natural a busca por métodos que nos permitam representar o desconhecido em termos matemáticos. Esses problemas originam uma grande classe de programas probabilísticos reconhecidos como modelos de programação estocástica. Eles são mais realísticos que os modelos determinísticos, e tem por objetivo incorporar a incerteza em suas definições. Essa tese aborda os problemas probabilísticos da classe de problemas de multi-estágio com incerteza e com restrições probabilísticas e com restrições probabilísticas conjuntas. Inicialmente, nós propomos um modelo de administração de ativos e passivos multi-estágio estocástico para a indústria de fundos de pensão brasileira. Nosso modelo é formalizado em conformidade com a leis e políticas brasileiras. A seguir, dada a relevância dos dados de entrada para esses modelos de otimização, tornamos nossa atenção às diferentes técnicas de amostragem. Elas compõem o processo de discretização desses modelos estocásticos Nós verificamos como as diferentes metodologias de amostragem impactam a solução final e a alocação do portfólio, destacando boas opções para modelos de administração de ativos e passivos. Finalmente, nós propomos um “framework” para a geração de árvores de cenário e otimização de modelos com incerteza multi-estágio. Baseados na tranformação de Knuth, nós geramos a árvore de cenários considerando a representação filho-esqueda, irmão-direita o que torna a simulação mais eficiente em termos de tempo e de número de cenários. Nós também formalizamos uma reformulação do modelo de administração de ativos e passivos baseada na abordagem extensiva implícita para o modelo de otimização. Essa técnica é projetada pela definição de um processo de filtragem com “bundles”; e codifciada com o auxílio de uma linguagem de modelagem algébrica. A eficiência dessa metodologia é testada em um modelo de administração de ativos e passivos com incerteza com restrições probabilísticas conjuntas. Nosso framework torna possível encontrar a solução ótima para árvores com um número razoável de cenários. |
| publishDate |
2018 |
| dc.date.accessioned.fl_str_mv |
2018-06-09T03:35:04Z |
| dc.date.issued.fl_str_mv |
2018 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
http://hdl.handle.net/10183/179270 |
| dc.identifier.nrb.pt_BR.fl_str_mv |
001068986 |
| url |
http://hdl.handle.net/10183/179270 |
| identifier_str_mv |
001068986 |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da UFRGS instname:Universidade Federal do Rio Grande do Sul (UFRGS) instacron:UFRGS |
| instname_str |
Universidade Federal do Rio Grande do Sul (UFRGS) |
| instacron_str |
UFRGS |
| institution |
UFRGS |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| collection |
Biblioteca Digital de Teses e Dissertações da UFRGS |
| bitstream.url.fl_str_mv |
http://www.lume.ufrgs.br/bitstream/10183/179270/1/001068986.pdf http://www.lume.ufrgs.br/bitstream/10183/179270/2/001068986.pdf.txt |
| bitstream.checksum.fl_str_mv |
01a1a2977d6ec6027c6fa189c14f5f66 5233a0fb43c540b1788fdb2fc52279b7 |
| bitstream.checksumAlgorithm.fl_str_mv |
MD5 MD5 |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da UFRGS - Universidade Federal do Rio Grande do Sul (UFRGS) |
| repository.mail.fl_str_mv |
lume@ufrgs.br||lume@ufrgs.br |
| _version_ |
1831316045449658368 |