A novel deep neural network technique for drug-target interaction prediction

Detalhes bibliográficos
Ano de defesa: 2024
Autor(a) principal: Souza, Jackson Gomes de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/63476
Resumo: Drug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. Prediction of drug-target interaction is an essential part of the DD process because it can accelerate it and reduce required costs. DTI prediction performed in silico have used approaches based on molecular docking simulation, similarity-based and network and graph based. This paper presents MPS2ITDTI, a DTI prediction model obtained from research conducted in the following steps: the definition of a new method for representing/encoding molecule and protein sequences into images; and the definition of a deep-learning approach based on a convolutional neuralnetwork in order to create a new method for DTI prediction. The results of this research indicate that the image-based representation of molecule and protein sequences is a viable alternative to the NLP-based approaches and, as such, does not adopt an embedding layer in the neural network. The training results conducted with the Davis and KIBA datasets show that MPS2IT-DTI is viable compared to other state-of-the-art (SOTA) approaches in terms of performance and complexity of the neural network model. Regarding the Davis dataset, the results of the experiments indicate a concordance index (CI) of 0.876 and a MSE of 0.276; with the KIBA dataset, 0.836 and 0.226, respectively. Finally, the experimental results utilizing the BindingDB dataset and six core proteins of SARS-CoV-2 suggest that MPS2IT-DTI performs comparably with state-of-the-art methodologies for the repurposing of clinically approved antiviral agents in the context of COVID-19 treatment.
id UFRN_47e5792532758013c7f2efcf9be5c9cd
oai_identifier_str oai:repositorio.ufrn.br:123456789/63476
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling A novel deep neural network technique for drug-target interaction predictionDrug-Target InteractionDTI predictionDeep-learningCNPQ::ENGENHARIAS::ENGENHARIA ELETRICADrug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. Prediction of drug-target interaction is an essential part of the DD process because it can accelerate it and reduce required costs. DTI prediction performed in silico have used approaches based on molecular docking simulation, similarity-based and network and graph based. This paper presents MPS2ITDTI, a DTI prediction model obtained from research conducted in the following steps: the definition of a new method for representing/encoding molecule and protein sequences into images; and the definition of a deep-learning approach based on a convolutional neuralnetwork in order to create a new method for DTI prediction. The results of this research indicate that the image-based representation of molecule and protein sequences is a viable alternative to the NLP-based approaches and, as such, does not adopt an embedding layer in the neural network. The training results conducted with the Davis and KIBA datasets show that MPS2IT-DTI is viable compared to other state-of-the-art (SOTA) approaches in terms of performance and complexity of the neural network model. Regarding the Davis dataset, the results of the experiments indicate a concordance index (CI) of 0.876 and a MSE of 0.276; with the KIBA dataset, 0.836 and 0.226, respectively. Finally, the experimental results utilizing the BindingDB dataset and six core proteins of SARS-CoV-2 suggest that MPS2IT-DTI performs comparably with state-of-the-art methodologies for the repurposing of clinically approved antiviral agents in the context of COVID-19 treatment.A descoberta de fármacos (DD, do inglês drug discovery) é um processo demorado e caro. Portanto, a indústria emprega estratégias como reposicionamento de fármacos, que permite aplicar medicamentos já aprovados para tratar uma doença diferente, como ocorreu nos primeiros meses de 2020, durante a pandemia do COVID-19. A predição da interação fármaco-receptor (DTI, do inglês drug-target interaction) é uma parte essencial do processo de DD porque pode acelerá-lo e reduzir seu custo. A predição de DTI realizada in silico tem utilizado métodos baseados em molecular docking simulation, similaridade, redes e grafos. Este trabalho apresenta o MPS2IT-DTI, um modelo de predição de DTI obtido de uma pesquisa realizada por: definição de um novo método para representar sequências de moléculas e proteínas por meio de imagens; e definição de uma deep learning baseada em uma rede neural convolucional para criar um novo método de predição de DTI. Resultados da pesquisa demonstram que a representação de sequências de moléculas e proteínas como imagens é uma alternativa viável à utilização de abordagens baseadas no uso de técnicas de Processamento de Linguagem Natural (NLP, do ingles natural language processing) e, portanto, não adota uma camada de embedding na rede neural. Resultados de treinamento conduzidos com os datasets Davis e KIBA demonstraram que o MPS2IT-DTI é comparável aos métodos do estado-da-arte em termos de performance e complexidade do modelo da rede neural. Experimentos realizados com o dataset Davis resultaram em um índice de concordância (CI, do inglês concordance index) de 0.876 e um MSE de 0.276; e com o dataset KIBA, foram obtidos 0.836 e 0.226, respectivamente. Por fim, resultados de experimentos com o BindingDB dataset e seis proteínas-chave do SARS-CoV-2 indicaram que o MPS2IT-DTI é comparável aos métodos do estado-da-arte na tarefa de reposicionamento de fármacos antivirais aprovados para uso comercial para o tratamento da COVID-19.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOFernandes, Marcelo Augusto Costahttps://orcid.org/0000-0003-0665-7153http://lattes.cnpq.br/7022849614714429https://orcid.org/0000-0001-7536-2506http://lattes.cnpq.br/3475337353676349Barbosa, Raquel de MeloVillén, Fátima GarcíaSilva, Lucileide Medeiros Dantas daCoutinho, Maria Gracielly FernandesSouza, Jackson Gomes de2025-04-15T20:38:47Z2025-04-15T20:38:47Z2024-12-10info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfSOUZA, Jackson Gomes de. A novel deep neural network technique for drug-target interaction prediction. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.https://repositorio.ufrn.br/handle/123456789/63476info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2025-04-15T20:39:20Zoai:repositorio.ufrn.br:123456789/63476Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2025-04-15T20:39:20Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv A novel deep neural network technique for drug-target interaction prediction
title A novel deep neural network technique for drug-target interaction prediction
spellingShingle A novel deep neural network technique for drug-target interaction prediction
Souza, Jackson Gomes de
Drug-Target Interaction
DTI prediction
Deep-learning
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
title_short A novel deep neural network technique for drug-target interaction prediction
title_full A novel deep neural network technique for drug-target interaction prediction
title_fullStr A novel deep neural network technique for drug-target interaction prediction
title_full_unstemmed A novel deep neural network technique for drug-target interaction prediction
title_sort A novel deep neural network technique for drug-target interaction prediction
author Souza, Jackson Gomes de
author_facet Souza, Jackson Gomes de
author_role author
dc.contributor.none.fl_str_mv Fernandes, Marcelo Augusto Costa
https://orcid.org/0000-0003-0665-7153
http://lattes.cnpq.br/7022849614714429
https://orcid.org/0000-0001-7536-2506
http://lattes.cnpq.br/3475337353676349
Barbosa, Raquel de Melo
Villén, Fátima García
Silva, Lucileide Medeiros Dantas da
Coutinho, Maria Gracielly Fernandes
dc.contributor.author.fl_str_mv Souza, Jackson Gomes de
dc.subject.por.fl_str_mv Drug-Target Interaction
DTI prediction
Deep-learning
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
topic Drug-Target Interaction
DTI prediction
Deep-learning
CNPQ::ENGENHARIAS::ENGENHARIA ELETRICA
description Drug discovery (DD) is a time-consuming and expensive process. Thus, the industry employs strategies such as drug repositioning and drug repurposing, which allows the application of already approved drugs to treat a different disease, as occurred in the first months of 2020, during the COVID-19 pandemic. Prediction of drug-target interaction is an essential part of the DD process because it can accelerate it and reduce required costs. DTI prediction performed in silico have used approaches based on molecular docking simulation, similarity-based and network and graph based. This paper presents MPS2ITDTI, a DTI prediction model obtained from research conducted in the following steps: the definition of a new method for representing/encoding molecule and protein sequences into images; and the definition of a deep-learning approach based on a convolutional neuralnetwork in order to create a new method for DTI prediction. The results of this research indicate that the image-based representation of molecule and protein sequences is a viable alternative to the NLP-based approaches and, as such, does not adopt an embedding layer in the neural network. The training results conducted with the Davis and KIBA datasets show that MPS2IT-DTI is viable compared to other state-of-the-art (SOTA) approaches in terms of performance and complexity of the neural network model. Regarding the Davis dataset, the results of the experiments indicate a concordance index (CI) of 0.876 and a MSE of 0.276; with the KIBA dataset, 0.836 and 0.226, respectively. Finally, the experimental results utilizing the BindingDB dataset and six core proteins of SARS-CoV-2 suggest that MPS2IT-DTI performs comparably with state-of-the-art methodologies for the repurposing of clinically approved antiviral agents in the context of COVID-19 treatment.
publishDate 2024
dc.date.none.fl_str_mv 2024-12-10
2025-04-15T20:38:47Z
2025-04-15T20:38:47Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv SOUZA, Jackson Gomes de. A novel deep neural network technique for drug-target interaction prediction. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
https://repositorio.ufrn.br/handle/123456789/63476
identifier_str_mv SOUZA, Jackson Gomes de. A novel deep neural network technique for drug-target interaction prediction. Orientador: Dr. Marcelo Augusto Costa Fernandes. 2024. 111f. Tese (Doutorado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2024.
url https://repositorio.ufrn.br/handle/123456789/63476
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758811608907776