Euler e os números pentagonais
| Ano de defesa: | 2011 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
BR UFRN Programa de Pós-Graduação em Ensino de Ciências Naturais e Matemática Ensino de Ciências Naturais e Matemática |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/jspui/handle/123456789/16078 |
Resumo: | The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem |
| id |
UFRN_4b0382219f94fae4b51da1ceda16c620 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/16078 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Euler e os números pentagonaisLeonhard EulerNúmeros pentagonaisTeorema dos números pentagonaisLeonhard EulerPentagonal numbersPentagonal number theoremCNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICAThe present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theoremO presente trabalho de pesquisa compreende em um estudo de Leonhard Euler sobre os números pentagonais e o artigo Mirabilibus Proprietatibus Numerorum Pentagonalium -E524. Depois de uma breve revisão da vida e obra de Euler, analisamos os conceitos matemáticos abordados no referido artigo como também a sua contextualização histórica. Para tanto, explicamos o conceito de números figurados, mostrando seu modo de geração, bem como suas representações geométricas e algébricas. Em seguida, faz-se um pequeno histórico da busca euleriana para o Teorema dos Números Pentagonais, perpassando sua correspondência sobre o assunto com Daniel Bernoulli, Nikolaus Bernoulli e Christian Goldbach. No início, Euler afirma o teorema, porém admite que não sabe demonstrá-lo. Finalmente, em uma carta à Goldbach, de 1750, faz a procurada demonstração, a qual é publicada em E541, junto à demonstração alternativa. A expansão do conceito de número pentagonal é então explicada e justificada, tendo em vista a comparação das representações geométrica e algébrica dos novos números pentagonais com as dos números pentagonais tradicionais. Em seguida, explana-se o Teorema dos Números Pentagonais, isto é, o fato de que o produto infinito (1 x)(1 xx)(1 x 3)(1 x 4)(1 x 5)(1 x 6)(1 x 7) ... ser igual à série infinita 1 x 1 x 2+x 5+x 7 x 12 x 15+x 22+x 26 ..., onde os expoentes são dados pelos números pentagonais (expandidos) e o sinal é dado como mais ou menos conforme o expoente é um número pentagonal (seja tradicional, seja expandido) de ordem par ou ímpar. Também mencionamos que Euler, utiliza os números pentagonais e o referido teorema sobre outras partes da matemática, como: o conceito de partição, funções geradoras, a teoria do produto infinito e a soma de divisores. Finalizamos com uma explicação da demonstração do Teorema dos Números Pentagonais.Universidade Federal do Rio Grande do NorteBRUFRNPrograma de Pós-Graduação em Ensino de Ciências Naturais e MatemáticaEnsino de Ciências Naturais e MatemáticaFossa, John Andrewhttp://lattes.cnpq.br/5608890093007885http://lattes.cnpq.br/2466525106349625Morey, Bernadete Barbosahttp://lattes.cnpq.br/7554818862651491Baroni, Rosa Lucia Sverzuthttp://lattes.cnpq.br/3641041943819764Cota, Andreia Caroline da Silva2014-12-17T15:04:57Z2012-05-292014-12-17T15:04:57Z2011-10-26info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfapplication/pdfCOTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011.https://repositorio.ufrn.br/jspui/handle/123456789/16078porinfo:eu-repo/semantics/openAccessreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2017-11-02T14:07:48Zoai:repositorio.ufrn.br:123456789/16078Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2017-11-02T14:07:48Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Euler e os números pentagonais |
| title |
Euler e os números pentagonais |
| spellingShingle |
Euler e os números pentagonais Cota, Andreia Caroline da Silva Leonhard Euler Números pentagonais Teorema dos números pentagonais Leonhard Euler Pentagonal numbers Pentagonal number theorem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| title_short |
Euler e os números pentagonais |
| title_full |
Euler e os números pentagonais |
| title_fullStr |
Euler e os números pentagonais |
| title_full_unstemmed |
Euler e os números pentagonais |
| title_sort |
Euler e os números pentagonais |
| author |
Cota, Andreia Caroline da Silva |
| author_facet |
Cota, Andreia Caroline da Silva |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fossa, John Andrew http://lattes.cnpq.br/5608890093007885 http://lattes.cnpq.br/2466525106349625 Morey, Bernadete Barbosa http://lattes.cnpq.br/7554818862651491 Baroni, Rosa Lucia Sverzut http://lattes.cnpq.br/3641041943819764 |
| dc.contributor.author.fl_str_mv |
Cota, Andreia Caroline da Silva |
| dc.subject.por.fl_str_mv |
Leonhard Euler Números pentagonais Teorema dos números pentagonais Leonhard Euler Pentagonal numbers Pentagonal number theorem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| topic |
Leonhard Euler Números pentagonais Teorema dos números pentagonais Leonhard Euler Pentagonal numbers Pentagonal number theorem CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA |
| description |
The present investigation includes a study of Leonhard Euler and the pentagonal numbers is his article Mirabilibus Proprietatibus Numerorum Pentagonalium - E524. After a brief review of the life and work of Euler, we analyze the mathematical concepts covered in that article as well as its historical context. For this purpose, we explain the concept of figurate numbers, showing its mode of generation, as well as its geometric and algebraic representations. Then, we present a brief history of the search for the Eulerian pentagonal number theorem, based on his correspondence on the subject with Daniel Bernoulli, Nikolaus Bernoulli, Christian Goldbach and Jean Le Rond d'Alembert. At first, Euler states the theorem, but admits that he doesn t know to prove it. Finally, in a letter to Goldbach in 1750, he presents a demonstration, which is published in E541, along with an alternative proof. The expansion of the concept of pentagonal number is then explained and justified by compare the geometric and algebraic representations of the new pentagonal numbers pentagonal numbers with those of traditional pentagonal numbers. Then we explain to the pentagonal number theorem, that is, the fact that the infinite product(1 x)(1 xx)(1 x3)(1 x4)(1 x5)(1 x6)(1 x7)... is equal to the infinite series 1 x1 x2+x5+x7 x12 x15+x22+x26 ..., where the exponents are given by the pentagonal numbers (expanded) and the sign is determined by whether as more or less as the exponent is pentagonal number (traditional or expanded). We also mention that Euler relates the pentagonal number theorem to other parts of mathematics, such as the concept of partitions, generating functions, the theory of infinite products and the sum of divisors. We end with an explanation of Euler s demonstration pentagonal number theorem |
| publishDate |
2011 |
| dc.date.none.fl_str_mv |
2011-10-26 2012-05-29 2014-12-17T15:04:57Z 2014-12-17T15:04:57Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
COTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011. https://repositorio.ufrn.br/jspui/handle/123456789/16078 |
| identifier_str_mv |
COTA, Andreia Caroline da Silva. Euler e os números pentagonais. 2011. 105 f. Dissertação (Mestrado em Ensino de Ciências Naturais e Matemática) - Universidade Federal do Rio Grande do Norte, Natal, 2011. |
| url |
https://repositorio.ufrn.br/jspui/handle/123456789/16078 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Ensino de Ciências Naturais e Matemática Ensino de Ciências Naturais e Matemática |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte BR UFRN Programa de Pós-Graduação em Ensino de Ciências Naturais e Matemática Ensino de Ciências Naturais e Matemática |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758822363103232 |