Hardware implementation of the Otsu's method applied to realtime worm segmentation
| Ano de defesa: | 2021 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Dissertação |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/handle/123456789/46475 |
Resumo: | Behavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time. |
| id |
UFRN_5d56a9a4b68b06dfd8836abaedaafc53 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/46475 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Hardware implementation of the Otsu's method applied to realtime worm segmentationFPGAImage segmentationOtsu's methodWorm trackingC. elegansBehavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEstudos sobre a genômica comportamental empregando o verme Caenorhabditis elegans têm auxiliado a descoberta de novas associações gene-comportamentais e a triagem de novas drogas. Os experimentos envolvendo esse verme são gravados por câmeras de alta resolução, gerando vídeos que serão posteriormente processados por soluções computacionais para análise comportamental automatizada. Devido o grande volume de dados para ser processado, essas análises são geralmente realizadas offline. Contudo, deseja-se desenvolver uma implementação de alto throughput capaz de operar em tempo real, buscando reduzir a ocupação de memória pelo armazenamento dos vídeos e permitir a realização de novos tipos de experimentos. Uma maneira de acelerar os algoritmos empregados é através do uso de computação reconfigurável. Diante disso, este trabalho propõe o desenvolvimento em hardware do método de Otsu para a segmentação dos vermes em tempo real. A implementação proposta foi desenvolvida em Field Programmable Gate Array (FPGA) utilizando uma estratégia totalmente paralela com representação em ponto fixo. Os detalhes da arquitetura são apresentados, assim como resultados de síntese relacionados a área de ocupação, tempo de processamento e consumo de potência dinâmica. Também são fornecidos resultados sobre a validação da implementação utilizando imagens dos vermes. Os dados mostram que a arquitetura proposta consegue obter elevados speedups em comparação com trabalhos semelhantes apresentados na literatura, além de permitir a segmentação dos vermes em tempo real.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOFernandes, Marcelo Augusto Costahttp://lattes.cnpq.br/2532477079704883http://lattes.cnpq.br/3475337353676349Gomes, Rafael Beserrahttp://lattes.cnpq.br/5849107545126304Brito Júnior, Agostinho de MedeirosCarvalho, Marco Antonio Garcia dehttp://lattes.cnpq.br/6366443994619479Barros, Wysterlânya Kyury Pereira2022-03-09T16:40:48Z2022-03-09T16:40:48Z2021-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.https://repositorio.ufrn.br/handle/123456789/46475info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2022-05-02T15:32:18Zoai:repositorio.ufrn.br:123456789/46475Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2022-05-02T15:32:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| title |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| spellingShingle |
Hardware implementation of the Otsu's method applied to realtime worm segmentation Barros, Wysterlânya Kyury Pereira FPGA Image segmentation Otsu's method Worm tracking C. elegans |
| title_short |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| title_full |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| title_fullStr |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| title_full_unstemmed |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| title_sort |
Hardware implementation of the Otsu's method applied to realtime worm segmentation |
| author |
Barros, Wysterlânya Kyury Pereira |
| author_facet |
Barros, Wysterlânya Kyury Pereira |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Fernandes, Marcelo Augusto Costa http://lattes.cnpq.br/2532477079704883 http://lattes.cnpq.br/3475337353676349 Gomes, Rafael Beserra http://lattes.cnpq.br/5849107545126304 Brito Júnior, Agostinho de Medeiros Carvalho, Marco Antonio Garcia de http://lattes.cnpq.br/6366443994619479 |
| dc.contributor.author.fl_str_mv |
Barros, Wysterlânya Kyury Pereira |
| dc.subject.por.fl_str_mv |
FPGA Image segmentation Otsu's method Worm tracking C. elegans |
| topic |
FPGA Image segmentation Otsu's method Worm tracking C. elegans |
| description |
Behavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time. |
| publishDate |
2021 |
| dc.date.none.fl_str_mv |
2021-11-17 2022-03-09T16:40:48Z 2022-03-09T16:40:48Z |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/masterThesis |
| format |
masterThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
BARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021. https://repositorio.ufrn.br/handle/123456789/46475 |
| identifier_str_mv |
BARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021. |
| url |
https://repositorio.ufrn.br/handle/123456789/46475 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758879920488448 |