Hardware implementation of the Otsu's method applied to realtime worm segmentation

Detalhes bibliográficos
Ano de defesa: 2021
Autor(a) principal: Barros, Wysterlânya Kyury Pereira
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://repositorio.ufrn.br/handle/123456789/46475
Resumo: Behavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time.
id UFRN_5d56a9a4b68b06dfd8836abaedaafc53
oai_identifier_str oai:repositorio.ufrn.br:123456789/46475
network_acronym_str UFRN
network_name_str Repositório Institucional da UFRN
repository_id_str
spelling Hardware implementation of the Otsu's method applied to realtime worm segmentationFPGAImage segmentationOtsu's methodWorm trackingC. elegansBehavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESEstudos sobre a genômica comportamental empregando o verme Caenorhabditis elegans têm auxiliado a descoberta de novas associações gene-comportamentais e a triagem de novas drogas. Os experimentos envolvendo esse verme são gravados por câmeras de alta resolução, gerando vídeos que serão posteriormente processados por soluções computacionais para análise comportamental automatizada. Devido o grande volume de dados para ser processado, essas análises são geralmente realizadas offline. Contudo, deseja-se desenvolver uma implementação de alto throughput capaz de operar em tempo real, buscando reduzir a ocupação de memória pelo armazenamento dos vídeos e permitir a realização de novos tipos de experimentos. Uma maneira de acelerar os algoritmos empregados é através do uso de computação reconfigurável. Diante disso, este trabalho propõe o desenvolvimento em hardware do método de Otsu para a segmentação dos vermes em tempo real. A implementação proposta foi desenvolvida em Field Programmable Gate Array (FPGA) utilizando uma estratégia totalmente paralela com representação em ponto fixo. Os detalhes da arquitetura são apresentados, assim como resultados de síntese relacionados a área de ocupação, tempo de processamento e consumo de potência dinâmica. Também são fornecidos resultados sobre a validação da implementação utilizando imagens dos vermes. Os dados mostram que a arquitetura proposta consegue obter elevados speedups em comparação com trabalhos semelhantes apresentados na literatura, além de permitir a segmentação dos vermes em tempo real.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃOFernandes, Marcelo Augusto Costahttp://lattes.cnpq.br/2532477079704883http://lattes.cnpq.br/3475337353676349Gomes, Rafael Beserrahttp://lattes.cnpq.br/5849107545126304Brito Júnior, Agostinho de MedeirosCarvalho, Marco Antonio Garcia dehttp://lattes.cnpq.br/6366443994619479Barros, Wysterlânya Kyury Pereira2022-03-09T16:40:48Z2022-03-09T16:40:48Z2021-11-17info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfBARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.https://repositorio.ufrn.br/handle/123456789/46475info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2022-05-02T15:32:18Zoai:repositorio.ufrn.br:123456789/46475Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2022-05-02T15:32:18Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false
dc.title.none.fl_str_mv Hardware implementation of the Otsu's method applied to realtime worm segmentation
title Hardware implementation of the Otsu's method applied to realtime worm segmentation
spellingShingle Hardware implementation of the Otsu's method applied to realtime worm segmentation
Barros, Wysterlânya Kyury Pereira
FPGA
Image segmentation
Otsu's method
Worm tracking
C. elegans
title_short Hardware implementation of the Otsu's method applied to realtime worm segmentation
title_full Hardware implementation of the Otsu's method applied to realtime worm segmentation
title_fullStr Hardware implementation of the Otsu's method applied to realtime worm segmentation
title_full_unstemmed Hardware implementation of the Otsu's method applied to realtime worm segmentation
title_sort Hardware implementation of the Otsu's method applied to realtime worm segmentation
author Barros, Wysterlânya Kyury Pereira
author_facet Barros, Wysterlânya Kyury Pereira
author_role author
dc.contributor.none.fl_str_mv Fernandes, Marcelo Augusto Costa
http://lattes.cnpq.br/2532477079704883
http://lattes.cnpq.br/3475337353676349
Gomes, Rafael Beserra
http://lattes.cnpq.br/5849107545126304
Brito Júnior, Agostinho de Medeiros
Carvalho, Marco Antonio Garcia de
http://lattes.cnpq.br/6366443994619479
dc.contributor.author.fl_str_mv Barros, Wysterlânya Kyury Pereira
dc.subject.por.fl_str_mv FPGA
Image segmentation
Otsu's method
Worm tracking
C. elegans
topic FPGA
Image segmentation
Otsu's method
Worm tracking
C. elegans
description Behavioral genomic studies employing the worm Caenorhabditis elegans have aided the discovery of new gene-behavioral associations and the screening of new drugs. Highresolution cameras record experiments with this worm, generating videos that computational solutions will later process for automated behavioral analysis. Because of the large volume of data to be processed, these analyses usually have to be performed offline. However, it is desired to develop a high-throughput implementation capable of operating in real-time, seeking to reduce the memory occupation by storing videos and allow the realization of new kinds of experiments. One way to speed up the algorithms employed is through the use of reconfigurable computing. Therefore, this work proposes the hardware development of the Otsu method for worm segmentation in real-time. The proposed implementation was developed in Field Programmable Gate Array (FPGA) using a fully parallel strategy with fixed-point representation. Architecture details are presented, as well as synthesis results related to the hardware area occupation, throughput, and dynamic power consumption. Results about validation of the implementation using images of the worms are also provided. The data show that the proposed architecture can achieve high speedups compared to similar work presented in the literature, besides allowing the segmentation of worms in real-time.
publishDate 2021
dc.date.none.fl_str_mv 2021-11-17
2022-03-09T16:40:48Z
2022-03-09T16:40:48Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv BARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.
https://repositorio.ufrn.br/handle/123456789/46475
identifier_str_mv BARROS, Wysterlânya Kyury Pereira. Hardware implementation of the Otsu's method applied to realtime worm segmentation. 2021. 66f. Dissertação (Mestrado em Engenharia Elétrica e de Computação) - Centro de Tecnologia, Universidade Federal do Rio Grande do Norte, Natal, 2021.
url https://repositorio.ufrn.br/handle/123456789/46475
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
publisher.none.fl_str_mv Universidade Federal do Rio Grande do Norte
Brasil
UFRN
PROGRAMA DE PÓS-GRADUAÇÃO EM ENGENHARIA ELÉTRICA E DE COMPUTAÇÃO
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRN
instname:Universidade Federal do Rio Grande do Norte (UFRN)
instacron:UFRN
instname_str Universidade Federal do Rio Grande do Norte (UFRN)
instacron_str UFRN
institution UFRN
reponame_str Repositório Institucional da UFRN
collection Repositório Institucional da UFRN
repository.name.fl_str_mv Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)
repository.mail.fl_str_mv repositorio@bczm.ufrn.br
_version_ 1855758879920488448