Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | por |
| Instituição de defesa: |
Universidade Federal do Rio Grande do Norte
Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO |
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://repositorio.ufrn.br/handle/123456789/48504 |
Resumo: | Hybrid algorithms combine the best features of individual metaheuristics. They have proven to find high-quality solutions for multi-objective optimization problems. Architec- tures provide generic functionalities and features for implementing new hybrid algorithms to solve arbitrary optimization problems. Architectures based on agent intelligence and multi-agent concepts, such as learning and cooperation, give several benefits for hybridiz- ing metaheuristics. Nevertheless, there is a lack of studies on architectures that fully explore these concepts for multi-objective hybridization. This thesis studies a multi-agent architecture named MO-MAHM, inspired by Particle Swarm Optimization concepts. In the MO-MAHM, particles are intelligent agents that learn from past experiences and move in the search space, looking for high-quality solutions. The main contribution of this work is to study the MO-MAHM potential to hybridize metaheuristics for solving combinatorial optimization problems with two or more objectives. We investigate the benefits of machine learning methods for agents’ learning support and propose a novel velocity operator for moving the agents in the search space. The proposed velocity operator uses a path-relinking technique and decomposes the objective space without requiring aggregation functions. Another contribution of this thesis is an extensive survey of existing multi-objective path-relinking techniques. Due to a lack in the literature of effective multi- and many-objective path-relinking techniques, we present a novel decomposition-based one, referred to as MOPR/D. Experiments comprise three differently structured combi- natorial optimization problems with up to five objective functions: 0/1 multidimensional knapsack, quadratic assignment, and spanning tree. We compared the MO-MAHM with existing hybrid approaches, such as memetic algorithms and hyper-heuristics. Statistical tests show that the architecture presents competitive results regarding the quality of the approximation sets and solution diversity. |
| id |
UFRN_8528aa87c28b264e9397ded272cb8db3 |
|---|---|
| oai_identifier_str |
oai:repositorio.ufrn.br:123456789/48504 |
| network_acronym_str |
UFRN |
| network_name_str |
Repositório Institucional da UFRN |
| repository_id_str |
|
| spelling |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architectureHibridização de meta-heurísticasOtimização multiobjetivoInteligência de agentesSistemas multiagentesDecomposiçãoHybrid algorithms combine the best features of individual metaheuristics. They have proven to find high-quality solutions for multi-objective optimization problems. Architec- tures provide generic functionalities and features for implementing new hybrid algorithms to solve arbitrary optimization problems. Architectures based on agent intelligence and multi-agent concepts, such as learning and cooperation, give several benefits for hybridiz- ing metaheuristics. Nevertheless, there is a lack of studies on architectures that fully explore these concepts for multi-objective hybridization. This thesis studies a multi-agent architecture named MO-MAHM, inspired by Particle Swarm Optimization concepts. In the MO-MAHM, particles are intelligent agents that learn from past experiences and move in the search space, looking for high-quality solutions. The main contribution of this work is to study the MO-MAHM potential to hybridize metaheuristics for solving combinatorial optimization problems with two or more objectives. We investigate the benefits of machine learning methods for agents’ learning support and propose a novel velocity operator for moving the agents in the search space. The proposed velocity operator uses a path-relinking technique and decomposes the objective space without requiring aggregation functions. Another contribution of this thesis is an extensive survey of existing multi-objective path-relinking techniques. Due to a lack in the literature of effective multi- and many-objective path-relinking techniques, we present a novel decomposition-based one, referred to as MOPR/D. Experiments comprise three differently structured combi- natorial optimization problems with up to five objective functions: 0/1 multidimensional knapsack, quadratic assignment, and spanning tree. We compared the MO-MAHM with existing hybrid approaches, such as memetic algorithms and hyper-heuristics. Statistical tests show that the architecture presents competitive results regarding the quality of the approximation sets and solution diversity.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESAlgoritmos híbridos combinam as melhores características de meta-heurísticas individuais. Eles têm se mostrado eficazes em encontrar soluções de boa qualidade para problemas de otimização multiobjetivo. Arquiteturas fornecem funcionalidades e recursos genéricos para a implementação de novos algoritmos híbridos capazes de resolver problemas arbitrários de otimização. Arquiteturas baseadas em conceitos de inteligência de agentes e sistemas multiagente, como aprendizado e cooperação, oferecem vários benefícios para a hibridização de meta-heurísticas. No entanto, a literatura carece de estudos sobre arquiteturas que exploram totalmente tais conceitos para hibridização multiobjetivo. Esta tese estuda uma arquitetura multiagente, chamada MO-MAHM, inspirada nos conceitos de Otimização por Nuvem de Partículas. Na MO-MAHM, partículas são agentes inteligentes que aprendem com suas experiências passadas e se movem no espaço de busca procurando por soluções de alta qualidade. A principal contribuição desta tese é estudar o potencial da MO-MAHM em hibridizar meta-heurísticas para resolver problemas de otimização combinatória com dois ou mais objetivos. Este trabalho investiga os benefícios de métodos de aprendizagem de máquina para suporte ao aprendizado dos agentes e propõe um novo operador de velocidade para mover os agentes no espaço de busca. O operador de velocidade proposto usa uma técnica de path-relinking e decompõe o espaço objetivo sem utilizar funções de agregação. Outra contribuição desta tese é uma extensa revisão das técnicas existentes de path-relinking multiobjetivo. Devido a uma carência com respeito a técnicas de path- relinking para múltiplos objetivos, esta tese apresenta um novo path-relinking baseado em decomposição, chamado MOPR/D. Experimentos abrangem três problemas de otimização combinatória de formulações distintas com até cinco funções objetivo: mochila binária multi-dimensional, alocação quadrática e árvore geradora. MO-MAHM é comparada com abordagens híbridas existentes, tais como algoritmos meméticos e hyper-heurísticas. Testes estatísticos mostram que a arquitetura apresenta resultados competitivos com respeito à qualidade dos conjuntos aproximativos e diversidade de soluções.Universidade Federal do Rio Grande do NorteBrasilUFRNPROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃOGoldbarg, Elizabeth Ferreira Gouveahttps://orcid.org/0000-0003-3534-8042http://lattes.cnpq.br/0058216016593116http://lattes.cnpq.br/2888641121265608Goldbarg, Marco Césarhttp://lattes.cnpq.br/1371199678541174Delgado, Myriam Regattieri de Biase da SilvaMaia, Silvia Maria Diniz Monteirohttp://lattes.cnpq.br/1498104590221901Souza, Thatiana Cunha Navarro deFernandes, Islame Felipe da Costa2022-07-14T22:59:21Z2022-07-14T22:59:21Z2022-06-15info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfFERNANDES, Islame Felipe da Costa. Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture. 2022. 181f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022.https://repositorio.ufrn.br/handle/123456789/48504info:eu-repo/semantics/openAccessporreponame:Repositório Institucional da UFRNinstname:Universidade Federal do Rio Grande do Norte (UFRN)instacron:UFRN2022-07-14T23:00:02Zoai:repositorio.ufrn.br:123456789/48504Repositório InstitucionalPUBhttp://repositorio.ufrn.br/oai/repositorio@bczm.ufrn.bropendoar:2022-07-14T23:00:02Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN)false |
| dc.title.none.fl_str_mv |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| title |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| spellingShingle |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture Fernandes, Islame Felipe da Costa Hibridização de meta-heurísticas Otimização multiobjetivo Inteligência de agentes Sistemas multiagentes Decomposição |
| title_short |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| title_full |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| title_fullStr |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| title_full_unstemmed |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| title_sort |
Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture |
| author |
Fernandes, Islame Felipe da Costa |
| author_facet |
Fernandes, Islame Felipe da Costa |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Goldbarg, Elizabeth Ferreira Gouvea https://orcid.org/0000-0003-3534-8042 http://lattes.cnpq.br/0058216016593116 http://lattes.cnpq.br/2888641121265608 Goldbarg, Marco César http://lattes.cnpq.br/1371199678541174 Delgado, Myriam Regattieri de Biase da Silva Maia, Silvia Maria Diniz Monteiro http://lattes.cnpq.br/1498104590221901 Souza, Thatiana Cunha Navarro de |
| dc.contributor.author.fl_str_mv |
Fernandes, Islame Felipe da Costa |
| dc.subject.por.fl_str_mv |
Hibridização de meta-heurísticas Otimização multiobjetivo Inteligência de agentes Sistemas multiagentes Decomposição |
| topic |
Hibridização de meta-heurísticas Otimização multiobjetivo Inteligência de agentes Sistemas multiagentes Decomposição |
| description |
Hybrid algorithms combine the best features of individual metaheuristics. They have proven to find high-quality solutions for multi-objective optimization problems. Architec- tures provide generic functionalities and features for implementing new hybrid algorithms to solve arbitrary optimization problems. Architectures based on agent intelligence and multi-agent concepts, such as learning and cooperation, give several benefits for hybridiz- ing metaheuristics. Nevertheless, there is a lack of studies on architectures that fully explore these concepts for multi-objective hybridization. This thesis studies a multi-agent architecture named MO-MAHM, inspired by Particle Swarm Optimization concepts. In the MO-MAHM, particles are intelligent agents that learn from past experiences and move in the search space, looking for high-quality solutions. The main contribution of this work is to study the MO-MAHM potential to hybridize metaheuristics for solving combinatorial optimization problems with two or more objectives. We investigate the benefits of machine learning methods for agents’ learning support and propose a novel velocity operator for moving the agents in the search space. The proposed velocity operator uses a path-relinking technique and decomposes the objective space without requiring aggregation functions. Another contribution of this thesis is an extensive survey of existing multi-objective path-relinking techniques. Due to a lack in the literature of effective multi- and many-objective path-relinking techniques, we present a novel decomposition-based one, referred to as MOPR/D. Experiments comprise three differently structured combi- natorial optimization problems with up to five objective functions: 0/1 multidimensional knapsack, quadratic assignment, and spanning tree. We compared the MO-MAHM with existing hybrid approaches, such as memetic algorithms and hyper-heuristics. Statistical tests show that the architecture presents competitive results regarding the quality of the approximation sets and solution diversity. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-07-14T22:59:21Z 2022-07-14T22:59:21Z 2022-06-15 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
FERNANDES, Islame Felipe da Costa. Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture. 2022. 181f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022. https://repositorio.ufrn.br/handle/123456789/48504 |
| identifier_str_mv |
FERNANDES, Islame Felipe da Costa. Hybridizing metaheuristics for multi-and many-objective problems in a multi-agent architecture. 2022. 181f. Tese (Doutorado em Ciência da Computação) - Centro de Ciências Exatas e da Terra, Universidade Federal do Rio Grande do Norte, Natal, 2022. |
| url |
https://repositorio.ufrn.br/handle/123456789/48504 |
| dc.language.iso.fl_str_mv |
por |
| language |
por |
| dc.rights.driver.fl_str_mv |
info:eu-repo/semantics/openAccess |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO |
| publisher.none.fl_str_mv |
Universidade Federal do Rio Grande do Norte Brasil UFRN PROGRAMA DE PÓS-GRADUAÇÃO EM SISTEMAS E COMPUTAÇÃO |
| dc.source.none.fl_str_mv |
reponame:Repositório Institucional da UFRN instname:Universidade Federal do Rio Grande do Norte (UFRN) instacron:UFRN |
| instname_str |
Universidade Federal do Rio Grande do Norte (UFRN) |
| instacron_str |
UFRN |
| institution |
UFRN |
| reponame_str |
Repositório Institucional da UFRN |
| collection |
Repositório Institucional da UFRN |
| repository.name.fl_str_mv |
Repositório Institucional da UFRN - Universidade Federal do Rio Grande do Norte (UFRN) |
| repository.mail.fl_str_mv |
repositorio@bczm.ufrn.br |
| _version_ |
1855758793183330304 |