Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
| Ano de defesa: | 2022 |
|---|---|
| Autor(a) principal: | |
| Orientador(a): | |
| Banca de defesa: | |
| Tipo de documento: | Tese |
| Tipo de acesso: | Acesso aberto |
| Idioma: | eng |
| Instituição de defesa: |
Biblioteca Digitais de Teses e Dissertações da USP
|
| Programa de Pós-Graduação: |
Não Informado pela instituição
|
| Departamento: |
Não Informado pela instituição
|
| País: |
Não Informado pela instituição
|
| Palavras-chave em Português: | |
| Link de acesso: | https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/ |
Resumo: | The majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics. |
| id |
USP_b0733e91c9ab25ccdd29e133be11b5ba |
|---|---|
| oai_identifier_str |
oai:teses.usp.br:tde-16032022-105222 |
| network_acronym_str |
USP |
| network_name_str |
Biblioteca Digital de Teses e Dissertações da USP |
| repository_id_str |
|
| spelling |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.Empregando sistemas multi-agentes e teoria da escolha social para projetar hiper-heurísticas para problemas de otimização multi-objetivo.Agent-based votingAlgoritmosBorda count methodCopeland methodHeurísticaHyper-heuristicsKemeny-young methodMulti-agent systemsMulti-objective optimizationSistemas multiagentesSocial choice theoryTeoria da escolha socialVotação baseada em agentesThe majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics.A maioria dos algoritmos mais eficazes e eficientes para otimização multi-objetivo são baseados em Computação Evolucionária. Entretanto, o ato de escolher o algoritmo mais apropriado para solucionar um dado problema não é trivial, e sempre requer diversas execuções, o que custa tempo. Hiper-heurísticas de seleção fazem parte de uma área de pesquisa emergente que investiga diversas técnicas para detectar a melhor heurística-de-baixo-nível enquanto o problema de otimização é resolvido. Por outro lado, agentes são componentes autônomos responsáveis por monitorar um ambiente e executar algumas ações de acordo com suas percepções. Neste contexto, técnicas baseadas em agentes mostram-se adequadas para o projeto de hiper-heurísticas. Existem diversas hiper-heurísticas propostas para controlar heurísticas-de-baixo-nível, mas apenas poucas são focadas em selecionar algoritmos evolucionários multi-objetivo. Este trabalho apresenta uma hiper-heurística baseada em agentes focada em escolher o melhor algoritmo evolucionário multi-objetivo. Baseado na Teoria da Escolha Social, o arcabouço proposto executa um procedimento de votação cooperativo, considerando um conjunto de eleitores, que votam baseados em um indicador de qualidade, para definir qual algoritmo deve gerar mais soluções ao longo da execução. Análises comparativas de desempenho foram realizadas empregando diversos problemas de otimização do mundo-real. Resultados mostraram que a abordagem proposta foi muito competitiva tanto quando comparada ao melhor algoritmo para cada problema como também quando comparada a outras hiper-heurísticas do estado-da-arte.Biblioteca Digitais de Teses e Dissertações da USPSichman, Jaime SimãoCarvalho, Vinicius Renan de2022-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:08Zoai:teses.usp.br:tde-16032022-105222Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false |
| dc.title.none.fl_str_mv |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. Empregando sistemas multi-agentes e teoria da escolha social para projetar hiper-heurísticas para problemas de otimização multi-objetivo. |
| title |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| spellingShingle |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. Carvalho, Vinicius Renan de Agent-based voting Algoritmos Borda count method Copeland method Heurística Hyper-heuristics Kemeny-young method Multi-agent systems Multi-objective optimization Sistemas multiagentes Social choice theory Teoria da escolha social Votação baseada em agentes |
| title_short |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| title_full |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| title_fullStr |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| title_full_unstemmed |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| title_sort |
Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems. |
| author |
Carvalho, Vinicius Renan de |
| author_facet |
Carvalho, Vinicius Renan de |
| author_role |
author |
| dc.contributor.none.fl_str_mv |
Sichman, Jaime Simão |
| dc.contributor.author.fl_str_mv |
Carvalho, Vinicius Renan de |
| dc.subject.por.fl_str_mv |
Agent-based voting Algoritmos Borda count method Copeland method Heurística Hyper-heuristics Kemeny-young method Multi-agent systems Multi-objective optimization Sistemas multiagentes Social choice theory Teoria da escolha social Votação baseada em agentes |
| topic |
Agent-based voting Algoritmos Borda count method Copeland method Heurística Hyper-heuristics Kemeny-young method Multi-agent systems Multi-objective optimization Sistemas multiagentes Social choice theory Teoria da escolha social Votação baseada em agentes |
| description |
The majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics. |
| publishDate |
2022 |
| dc.date.none.fl_str_mv |
2022-02-07 |
| dc.type.status.fl_str_mv |
info:eu-repo/semantics/publishedVersion |
| dc.type.driver.fl_str_mv |
info:eu-repo/semantics/doctoralThesis |
| format |
doctoralThesis |
| status_str |
publishedVersion |
| dc.identifier.uri.fl_str_mv |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/ |
| url |
https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/ |
| dc.language.iso.fl_str_mv |
eng |
| language |
eng |
| dc.relation.none.fl_str_mv |
|
| dc.rights.driver.fl_str_mv |
Liberar o conteúdo para acesso público. info:eu-repo/semantics/openAccess |
| rights_invalid_str_mv |
Liberar o conteúdo para acesso público. |
| eu_rights_str_mv |
openAccess |
| dc.format.none.fl_str_mv |
application/pdf |
| dc.coverage.none.fl_str_mv |
|
| dc.publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| publisher.none.fl_str_mv |
Biblioteca Digitais de Teses e Dissertações da USP |
| dc.source.none.fl_str_mv |
reponame:Biblioteca Digital de Teses e Dissertações da USP instname:Universidade de São Paulo (USP) instacron:USP |
| instname_str |
Universidade de São Paulo (USP) |
| instacron_str |
USP |
| institution |
USP |
| reponame_str |
Biblioteca Digital de Teses e Dissertações da USP |
| collection |
Biblioteca Digital de Teses e Dissertações da USP |
| repository.name.fl_str_mv |
Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP) |
| repository.mail.fl_str_mv |
virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br |
| _version_ |
1818279199419400192 |