Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.

Detalhes bibliográficos
Ano de defesa: 2022
Autor(a) principal: Carvalho, Vinicius Renan de
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Tese
Tipo de acesso: Acesso aberto
Idioma: eng
Instituição de defesa: Biblioteca Digitais de Teses e Dissertações da USP
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
Link de acesso: https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/
Resumo: The majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics.
id USP_b0733e91c9ab25ccdd29e133be11b5ba
oai_identifier_str oai:teses.usp.br:tde-16032022-105222
network_acronym_str USP
network_name_str Biblioteca Digital de Teses e Dissertações da USP
repository_id_str
spelling Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.Empregando sistemas multi-agentes e teoria da escolha social para projetar hiper-heurísticas para problemas de otimização multi-objetivo.Agent-based votingAlgoritmosBorda count methodCopeland methodHeurísticaHyper-heuristicsKemeny-young methodMulti-agent systemsMulti-objective optimizationSistemas multiagentesSocial choice theoryTeoria da escolha socialVotação baseada em agentesThe majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics.A maioria dos algoritmos mais eficazes e eficientes para otimização multi-objetivo são baseados em Computação Evolucionária. Entretanto, o ato de escolher o algoritmo mais apropriado para solucionar um dado problema não é trivial, e sempre requer diversas execuções, o que custa tempo. Hiper-heurísticas de seleção fazem parte de uma área de pesquisa emergente que investiga diversas técnicas para detectar a melhor heurística-de-baixo-nível enquanto o problema de otimização é resolvido. Por outro lado, agentes são componentes autônomos responsáveis por monitorar um ambiente e executar algumas ações de acordo com suas percepções. Neste contexto, técnicas baseadas em agentes mostram-se adequadas para o projeto de hiper-heurísticas. Existem diversas hiper-heurísticas propostas para controlar heurísticas-de-baixo-nível, mas apenas poucas são focadas em selecionar algoritmos evolucionários multi-objetivo. Este trabalho apresenta uma hiper-heurística baseada em agentes focada em escolher o melhor algoritmo evolucionário multi-objetivo. Baseado na Teoria da Escolha Social, o arcabouço proposto executa um procedimento de votação cooperativo, considerando um conjunto de eleitores, que votam baseados em um indicador de qualidade, para definir qual algoritmo deve gerar mais soluções ao longo da execução. Análises comparativas de desempenho foram realizadas empregando diversos problemas de otimização do mundo-real. Resultados mostraram que a abordagem proposta foi muito competitiva tanto quando comparada ao melhor algoritmo para cada problema como também quando comparada a outras hiper-heurísticas do estado-da-arte.Biblioteca Digitais de Teses e Dissertações da USPSichman, Jaime SimãoCarvalho, Vinicius Renan de2022-02-07info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/doctoralThesisapplication/pdfhttps://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/reponame:Biblioteca Digital de Teses e Dissertações da USPinstname:Universidade de São Paulo (USP)instacron:USPLiberar o conteúdo para acesso público.info:eu-repo/semantics/openAccesseng2024-10-09T12:45:08Zoai:teses.usp.br:tde-16032022-105222Biblioteca Digital de Teses e Dissertaçõeshttp://www.teses.usp.br/PUBhttp://www.teses.usp.br/cgi-bin/mtd2br.plvirginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.bropendoar:27212024-10-09T12:45:08Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)false
dc.title.none.fl_str_mv Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
Empregando sistemas multi-agentes e teoria da escolha social para projetar hiper-heurísticas para problemas de otimização multi-objetivo.
title Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
spellingShingle Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
Carvalho, Vinicius Renan de
Agent-based voting
Algoritmos
Borda count method
Copeland method
Heurística
Hyper-heuristics
Kemeny-young method
Multi-agent systems
Multi-objective optimization
Sistemas multiagentes
Social choice theory
Teoria da escolha social
Votação baseada em agentes
title_short Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
title_full Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
title_fullStr Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
title_full_unstemmed Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
title_sort Using multi-agent systems and social choice theory to design hyper-heuristics for multi-objective optimization problems.
author Carvalho, Vinicius Renan de
author_facet Carvalho, Vinicius Renan de
author_role author
dc.contributor.none.fl_str_mv Sichman, Jaime Simão
dc.contributor.author.fl_str_mv Carvalho, Vinicius Renan de
dc.subject.por.fl_str_mv Agent-based voting
Algoritmos
Borda count method
Copeland method
Heurística
Hyper-heuristics
Kemeny-young method
Multi-agent systems
Multi-objective optimization
Sistemas multiagentes
Social choice theory
Teoria da escolha social
Votação baseada em agentes
topic Agent-based voting
Algoritmos
Borda count method
Copeland method
Heurística
Hyper-heuristics
Kemeny-young method
Multi-agent systems
Multi-objective optimization
Sistemas multiagentes
Social choice theory
Teoria da escolha social
Votação baseada em agentes
description The majority of the most effective and efficient algorithms for multi-objective optimization are based on Evolutionary Computation. However, choosing the most appropriate algorithm to solve a certain problem is not trivial and often requires a time-consuming trial process. As an emerging area of research, hyper-heuristics investigates various techniques to detect the best low-level heuristic while the optimization problem is being solved. On the other hand, agents are autonomous component responsible for watching an environment and perform some actions according to their perceptions. In this context, agent-based techniques seem suitable for the design of hyper-heuristics. There are several hyper-heuristics proposed for controlling lowlevel heuristics, but only a few of them are focused on selecting multi-objective optimization algorithms (MOEA). This work presents an agent-based hyper-heuristic for choosing the best multi-objective evolutionary algorithm. Based on Social Choice Theory, the proposed framework performs a cooperative voting procedure, considering a set of quality indicator voters, to define which algorithm should generate more offspring along to the execution. Comparative performance analysis was performed across several benchmark functions and real-world problems. Results showed the proposed approach was very competitive both against the best MOEA for each given problem and against state-of-art hyper-heuristics.
publishDate 2022
dc.date.none.fl_str_mv 2022-02-07
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/doctoralThesis
format doctoralThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/
url https://www.teses.usp.br/teses/disponiveis/3/3141/tde-16032022-105222/
dc.language.iso.fl_str_mv eng
language eng
dc.relation.none.fl_str_mv
dc.rights.driver.fl_str_mv Liberar o conteúdo para acesso público.
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Liberar o conteúdo para acesso público.
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.coverage.none.fl_str_mv
dc.publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
publisher.none.fl_str_mv Biblioteca Digitais de Teses e Dissertações da USP
dc.source.none.fl_str_mv
reponame:Biblioteca Digital de Teses e Dissertações da USP
instname:Universidade de São Paulo (USP)
instacron:USP
instname_str Universidade de São Paulo (USP)
instacron_str USP
institution USP
reponame_str Biblioteca Digital de Teses e Dissertações da USP
collection Biblioteca Digital de Teses e Dissertações da USP
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da USP - Universidade de São Paulo (USP)
repository.mail.fl_str_mv virginia@if.usp.br|| atendimento@aguia.usp.br||virginia@if.usp.br
_version_ 1818279199419400192