Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.

Detalhes bibliográficos
Ano de defesa: 2025
Autor(a) principal: Quina, Demetrio de Almeida lattes
Orientador(a): Oliveira, Renata Nunes lattes
Banca de defesa: Oliveira, Renata Nunes lattes, Bonci, Mário Mendes lattes, Bigansolli, Antonio Renato lattes, Middea, Antonieta lattes
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de Pós-Graduação em Engenharia Química
Departamento: Instituto de Tecnologia
País: Brasil
Palavras-chave em Português:
Área do conhecimento CNPq:
Link de acesso: https://rima.ufrrj.br/jspui/handle/20.500.14407/24323
Resumo: A esporotricose felina é uma micose subcutânea de relevância zoonótica crescente no Brasil, especialmente no estado do Rio de Janeiro. O tratamento com itraconazol, embora eficaz, apresenta baixa adesão por parte dos gatos, devido à rejeição ao sabor amargo e à dificuldade de administração forçada. Esta dissertação propõe a encapsulação do fármaco itraconazol em esferas de alginato de sódio saborizadas com extrato de carne, visando maior palatabilidade, adesão voluntária e eficácia terapêutica. As esferas foram produzidas por gelificação iônica e caracterizadas por FTIR (Fourier transform infrared spectroscopy), Raman, MEV (Microscopia Eletrônica de Varredura), HPLC (High Performance Liquid Chromatography) e ensaios de inibição fúngica. Os resultados confirmaram o encapsulamento, a interação entre fármaco e matriz, e a atividade antifúngica das formulações, especialmente na presença de proteínas do extrato de carne, sugerindo possível sinergia com o fármaco. A proposta apresenta viabilidade tecnológica e potencial aplicação no controle da esporotricose, oferecendo uma alternativa eficaz, acessível e adaptada ao comportamento alimentar felino.
id UFRRJ-1_cdfe87f0e7eb5f543261c174d2ab455f
oai_identifier_str oai:rima.ufrrj.br:20.500.14407/24323
network_acronym_str UFRRJ-1
network_name_str Repositório Institucional da UFRRJ
repository_id_str
spelling Quina, Demetrio de AlmeidaOliveira, Renata Nuneshttps://orcid.org/0000-0001-9782-269Xhttp://lattes.cnpq.br/9026953896544145Oliveira, Renata Nuneshttps://orcid.org/0000-0001-9782-269Xhttp://lattes.cnpq.br/9026953896544145Bonci, Mário Mendeshttps://orcid.org/0000-0002-3837-7378http://lattes.cnpq.br/6383796387620437Bigansolli, Antonio Renatohttps://orcid.org/0000-0002-0142-5989http://lattes.cnpq.br/5868109671445446Middea, Antonietahttp://lattes.cnpq.br/0641524479927336https://orcid.org/0009-0001-4963-5555http://lattes.cnpq.br/23811189309336982025-12-10T16:11:44Z2025-12-10T16:11:44Z2025-09-24QUINA, Demetrio de Almeida. Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos. 2025. 82 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.https://rima.ufrrj.br/jspui/handle/20.500.14407/24323A esporotricose felina é uma micose subcutânea de relevância zoonótica crescente no Brasil, especialmente no estado do Rio de Janeiro. O tratamento com itraconazol, embora eficaz, apresenta baixa adesão por parte dos gatos, devido à rejeição ao sabor amargo e à dificuldade de administração forçada. Esta dissertação propõe a encapsulação do fármaco itraconazol em esferas de alginato de sódio saborizadas com extrato de carne, visando maior palatabilidade, adesão voluntária e eficácia terapêutica. As esferas foram produzidas por gelificação iônica e caracterizadas por FTIR (Fourier transform infrared spectroscopy), Raman, MEV (Microscopia Eletrônica de Varredura), HPLC (High Performance Liquid Chromatography) e ensaios de inibição fúngica. Os resultados confirmaram o encapsulamento, a interação entre fármaco e matriz, e a atividade antifúngica das formulações, especialmente na presença de proteínas do extrato de carne, sugerindo possível sinergia com o fármaco. A proposta apresenta viabilidade tecnológica e potencial aplicação no controle da esporotricose, oferecendo uma alternativa eficaz, acessível e adaptada ao comportamento alimentar felino.Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPESFeline sporotrichosis is a subcutaneous mycosis of increasing zoonotic relevance in Brazil, especially in the state of Rio de Janeiro. Although itraconazole is an effective treatment, it often shows low adherence by cats due to the drug's bitter taste and the difficulties of forced administration. This dissertation proposes the encapsulation of itraconazole in sodium alginate spheres flavored with meat extract, aiming to improve palatability, voluntary intake, and therapeutic efficacy. The spheres were produced by ionic gelation and characterized by FTIR, Raman spectroscopy, SEM, HPLC, and fungal growth inhibition assays. The results confirmed the encapsulation, interaction between the drug and the polymer matrix, and antifungal activity of the formulations, particularly in the presence of proteins from the meat extract, suggesting a possible synergistic effect. This approach demonstrates technological feasibility and potential application programs for controlling feline sporotrichosis, offering an effective, accessible, and behaviorally adapted alternative for veterinary treatment.porUniversidade Federal Rural do Rio de JaneiroPrograma de Pós-Graduação em Engenharia QuímicaUFRRJBrasilInstituto de TecnologiaEngenharia QuímicaEsporotricose felinaitraconazolAlginato de SódioPalatabilidadeFeline sporotrichosisItraconazoleSodium alginatePalatabilityEncapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisABOWSKA, M. B.; SKRODZKA, M.; SICIŃSKA, H.; MICHALAK, I.; DETYNA, J. Influence of cross-linking conditions on drying kinetics of alginate hydrogel. Gels, v. 9, n. 1, p. 63, 2023. DOI: https://doi.org/10.3390/gels9010063. ADAMKIEWICZ, L.; SZELESZCZUK, Ł. Review of applications of cyclodextrins as taste- masking excipients for pharmaceutical purposes. Molecules, Basel, v. 28, n. 19, p. 6964, 2023. DOI: https://doi.org/10.3390/molecules28196964. ADZMI, F.; MEON, S.; MUSA, M. H.; YUSUF, N. A. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. Journal of Microencapsulation, v. 29, n. 3, p. 205–210, 2012. DOI: https://doi.org/10.3109/02652048.2012.659286. ALBARELLI, J. Q. et al. Encapsulação de corantes funcionais em matriz de alginato puro ou recoberto por biopolímeros. In: CONGRESSO BRASILEIRO DE POLÍMEROS, 10., 2009, Foz do Iguaçu. Anais... Foz do Iguaçu: [s.n.], 2009. Disponível em: https://www.sbpol.org.br/cbp. ALMEIDA-PAES, R.; OLIVEIRA, M. M. E.; FREITAS, D. F. S.; DO VALLE, A. C. F.; ZANCOPÉ-OLIVEIRA, R. M.; GUTIERREZ-GALHARDO, M. C. Sporotrichosis in Rio de Janeiro, Brazil: epidemiological aspects and treatment with itraconazole. Memórias do Instituto Oswaldo Cruz, v. 112, n. 1, p. 31–39, 2017. DOI: https://doi.org/10.1590/0074-02760160527. ALHUSSAINI, M. S.; ALYAHYA, A. A. A. I.; AL-GHANAYEM, A. A. Alginate-derived antibacterial and antifungal agents: a review of applications and advances (2019–2025). International Journal of Biological Macromolecules, v. 318, parte 4, p. 145333, 2025. DOI: https://doi.org/10.1016/j.ijbiomac.2025.145333. ANNISA, V.; SULAIMAN, T. N. S.; NUGROHO, A. K.; NUGROHO, A. E. Uma nova formulação de cetoconazol encapsulado em alginato com esferas de polímero aniônico para aumento da solubilidade: preparação e caracterização. Pharmacia, v. 70, n. 4, p. 1423–1438, 2023. DOI: https://doi.org/10.3897/pharmacia.70.e108120. ASSIS, G. S.; ROMANI, A. F.; SOUZA, C. M.; VENTURA, G. F.; RODRIGUES, G. A.; STELLA, A. E. Esporotricose felina e saúde pública. Veterinária e Zootecnia, v. 29, p. 001-010, 2022. BARROS, M. B. de L.; ALMEIDA-PAES, R.; SCHUBACH, A. O. Sporothrix schenckii and sporotrichosis. Clinical Microbiology Reviews, v. 24, n. 4, p. 633–654, 2011. DOI: https://doi.org/10.1128/cmr.00007-11. BASTOS, F. A. G. D.; COGNIALLI, R. C. R.; FARIAS, M. R.; et al. Spread of Sporothrix spp. through respiratory droplets from infected cats: a potential route of transmission. Medical Mycology, v. 60, n. 11, eMyac079, 2022. DOI: https://doi.org/10.1093/mmy/myac079. 57 BOECHAT, J. S.; OLIVEIRA, M. M. E.; GREMIÃO, I. D. F.; et al. Sporothrix brasiliensis and feline sporotrichosis in the metropolitan region of Rio de Janeiro, Brazil (1998–2018). Journal of Fungi, Basel, v. 8, n. 7, p. 749, 2022. DOI: https://doi.org/10.3390/jof8070749. BRILHANTE, R. S. N.; PEREIRA, V. S.; OLIVEIRA, J. S.; COUTINHO, H. D. M.; COSTA, J. G. M.; ESPOSITO, T. S.; SIDRIM, J. J. C.; ROCHA, M. F. G. Terbinafine and itraconazole in the treatment of cutaneous sporotrichosis caused by Sporothrix brasiliensis: in vitro and in vivo study. Medical Mycology, v. 54, n. 7, p. 706–712, 2016. DOI: https://doi.org/10.1093/mmy/myv039. CAMPOS-VALLETTE, M.; CHANDÍA, N. P.; CLAVIJO CAMPOS, E.; LEAL, D.; MATSUHIRO, B.; OSORIO ROMÁN, I.; TORRES, S. Characterization of sodium alginate and its block fractions by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, v. 41, n. 7, p. 758–763, 2010. Disponível em: https://repositorio.uchile.cl/handle/2250/119262. CARR, D. A guide to the analysis and purification of proteins and peptides by reversed-phase HPLC. Aberdeen: ACE HPLC Columns, 2010. Disponível em: https://www.hplc.eu/Downloads/ACE_Guide_Peptides.pdf. CERQUEIRA, L. B. G.; DE SOUSA, A. C.; DA SILVA, Y. M.; BASTOS, T. S. A. Esporotricose em felinos no Brasil: breve revisão de literatura. Revista Sociedade Científica, v. 7, n. 1, p. 5245-5253, 2024. DOI: https://doi.org/10.61411/rsc202484117. ÇELIK, E.; BAYRAM, C.; AKÇAPINAR, R.; TÜRK, M.; DENKBAŞ, E. B. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Materials Science and Engineering: C, v. 66, p. 221–229, 2016. DOI: https://doi.org/10.1016/j.msec.2016.04.084. CHANGCHAROENSUK, C.; PHONGPHISUTTHINAN, A.; PICHAYAKORN, W.; CHAIPETCH, P.; WANICHPAKORN, P.; MANKHONGPHITHAKKUL, S.; SONGKRAM, C. Formulation, optimization, and evaluation of extemporaneous potassium chloride-loaded alginate beads. Science & Technology Asia, v. 28, n. 2, p. 196–203, 2023. DOI: https://doi.org/10.14456/scitechasia.2023.38. CHAUDHARI, S. A.; KAR, J. R.; SINGHAL, R. S. Immobilization of proteins in alginate: functional properties and applications. Current Protein & Peptide Science, v. 19, n. 17, p. 1732– 1754, 2015. DOI: https://doi.org/10.2174/1385272819666150429232110. CHENG, Y.; LUO, X.; BETZ, J.; PAYNE, G. F.; BENTLEY, W. E.; RUBLOFF, G. W. Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, v. 7, p. 5677–5684, 2011. DOI: https://doi.org/10.1039/c0sm01428a. CIARLEGLIO, G.; CINTI, F.; TOTO, E.; SANTONICOLA, M. G. Synthesis and characterization of alginate gel beads with embedded zeolite structures as carriers of hydrophobic curcumin. Gels, v. 9, n. 9, p. 714, 2023. DOI: https://doi.org/10.3390/gels9090714. COLOMBAN, P.; SLODCZYK, A. Raman intensity: an important tool in the study of nanomaterials and nanostructures. Acta Physica Polonica A, v. 116, n. 1, p. 7–12, 2009a. Disponível em: http://przyrbwn.icm.edu.pl/APP/PDF/116/a116z101.pdf. 58 COLOMBAN, P.; SLODCZYK, A. Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Optical Materials, v. 31, n. 12, p. 1759–1763, 2009. DOI: https://doi.org/10.1016/j.optmat.2008.12.030. COUNCIL OF EUROPE. European Pharmacopoeia. 11. ed., monografia 0625 “Sodium Alginate”. Strasbourg: EDQM, 2023. Disponível em (acesso restrito por assinatura): https://pheur.edqm.eu/. DALAL, S. R.; HUSSEIN, M. H.; EL-NAGGAR, N. E.; MOSTAFA, S. I.; SHAABAN- DESSUUKI, S. A. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Scientific Reports, v. 11, n. 1, p. 16741, 2021. DOI: https://doi.org/10.1038/s41598-021-96202-0. DAVARCI, F.; TURAN, D.; OZCELIK, B.; PONCELET, D. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocolloids, v. 62, p. 119-127, 2017. DOI: https://doi.org/10.1016/j.foodhyd.2016.07.004. DE BEER, T.; BAEYENS, W. R. G.; OUYANG, J.; VERVAET, C.; REMON, J. P. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. Analyst, v. 131, n. 10, p. 1137–1144, 2006. DOI: https://doi.org/10.1039/B605299A. DE MELO TEIXEIRA, M.; et al. Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Molecular Phylogenetics and Evolution, v. 52, n. 2, p. 273–283, 2009. DOI: https://doi.org/10.1016/j.ympev.2009.04.005. DERKACH, S. R.; VORON'KO, N. G.; SOKOLAN, N. I.; KOLOTOVA, D. S.; KUCHINA, Y. A. Interações entre gelatina e alginato de sódio: estudos UV e FTIR. Journal of Dispersion Science and Technology, v. 41, n. 5, p. 690–698, 2019. DOI: https://doi.org/10.1080/01932691.2019.1611437. Dobroslavić, E.; Cegledi, E.; Robić, K.; Elez Garofulić, I.; Dragović-Uzelac, V.; Repajić, M. Encapsulation of Fennel Essential Oil in Calcium Alginate Microbeads via Electrostatic Extrusion. Applied Sciences, v. 14, n. 8, p. 3522, 2024. DOI: hƩps://doi.org/10.3390/app14083522. DONG, A.; HUANG, P.; CAUGHEY, W. S. Protein secondary structures in water from second- derivative amide I infrared spectra. Biochemistry, v. 29, n. 13, p. 3303–3308, 1990. DOI: https://doi.org/10.1021/bi00465a022. EKWEREMADU, C. S.; ABDELHAKIM, H. E.; CRAIG, D. Q. M.; BARKER, S. A. Development and evaluation of feline tailored amlodipine besylate mini-tablets using L-lysine as a candidate flavouring agent. Pharmaceutics, v. 12, n. 10, p. 917, 2020. DOI: https://doi.org/10.3390/pharmaceutics12100917. EMAMI, S.; VALIZADEH, H.; ISLAMBULCHILAR, Z.; ZAKERI-MILANI, P. Development and physicochemical characterization of sirolimus solid dispersions prepared by solvent evaporation method. Advanced Pharmaceutical Bulletin, v. 4, n. 4, p. 369–374, 2014. DOI: https://doi.org/10.5681/apb.2014.054. 59 EUROPEAN MEDICINES AGENCY. Guideline on the demonstration of palatability of veterinary medicinal products. EMA/CVMP/EWP/206024/2011. London, 2012. EUROPEAN UNION. Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives. Official Journal of the European Union, 31 dez. 2008. Anexo II – código E-401 (sodium alginate). EVERALL, N. J. Raman spectroscopy of the condensed phase. In: CHALMERS, J. M.; GRIFFITHS, P. R. (ed.). Handbook of Vibrational Spectroscopy. Chichester: John Wiley & Sons, 2006. FALCÃO, E. M. M.; ROMÃO, A. R.; MAGALHÃES, M. A. F. M.; et al. A spatial analysis of the spread of hyperendemic sporotrichosis in the State of Rio de Janeiro, Brazil. Journal of Fungi, v. 8, n. 5, p. 434, 2022. DOI: https://doi.org/10.3390/jof8050434. FERNANDES, R. S.; MOURA, M. R.; GLENN, G. M.; AOUADA, F. A. Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, v. 265, p. 327–336, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.05.107. FERREIRA, Q. S.; SILVA, J. R.; SILVA, R. C.; PY-DANIEL, K. R.; AZEVEDO, R. B.; MORAIS, P. C.; SILVA, S. W. Surface-enhanced Raman spectroscopy for successful probing of itraconazole within poly(lactic-co-glycolic acid) nanoparticles. Journal of Raman Spectroscopy, v. 50, n. 7, p. 1085–1093, 2019. DOI: https://doi.org/10.1002/jrs.5628. FERREIRA, V. C. D.; FIGUEIREDO, A. B. F.; MAGALHÃES, M. A. F. M.; PEREIRA, S. A.; TASSINARI, W. Distribuição temporal e espacial da esporotricose na Região Metropolitana do Rio de Janeiro, Brasil: uma comparação de casos humanos e animais (2013–2020). Cadernos de Saúde Pública, v. 41, n. 2, e00133024, 2025. DOI: https://doi.org/10.1590/0102- 311XEN133024. FOODADDITIVES.NET. Sodium alginate (E-401): uses, structure, side effects. 2024. Disponível em: https://foodadditives.net/thickeners/sodium-alginate/. GONÇALVES, S. S.; POLA, C. C.; HOCKE, A. C.; et al. Sporothrix brasiliensis: epidemiology, clinical aspects, and antifungal susceptibility profiles. Journal of Fungi, v. 9, n. 8, p. 831, 2023. DOI: https://doi.org/10.3390/jof9080831. GRANT, G. T.; MORRIS, E. R.; REES, D. A.; SMITH, P. J. C.; THOM, D. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters, v. 32, n. 1, p. 195–198, 1973. DOI: https://doi.org/10.1016/0014-5793(73)80770-7. GREMIÃO, I. D. F.; MENEZES, R. C.; SCHUBACH, T. M. P.; et al. Feline sporotrichosis: epidemiological and clinical aspects. Medical Mycology, v. 53, n. 1, p. 15–21, 2015. DOI: https://doi.org/10.1093/mmy/myu061. GREMIÃO, I. D. F.; MIRANDA, L. H. M.; PEREIRA-OLIVEIRA, G. R.; MENEZES, R. C.; MACHADO, A. C. S.; RODRIGUES, A. M.; PEREIRA, S. A. Advances and challenges in the management of feline sporotrichosis. Revista Ibero-Americana de Micologia, v. 39, n. 3–4, p. 61–67, 2022. DOI: https://doi.org/10.1016/j.riam.2022.05.002. 60 GREMIÃO, I. D. F.; OLIVEIRA, M. M. E.; BARROS, M. B. L.; et al. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathogens, v. 13, n. 1, e1006077, 2017. DOI: https://doi.org/10.1371/journal.ppat.1006077. GULL, T.; ABUELO, A. Sporotrichosis in animals. MSD Veterinary Manual (versão profissional). Atualizado set. 2024. Disponível em: https://www.merckvetmanual.com/infectious-diseases/fungal-infections/sporotrichosis-in- animals. GUO, Q. Characterization of the interactions between itraconazole and human and bovine serum albumins by a spectroscopic method. Acta Physico-Chimica Sinica, v. 25, n. 11, p. 2205– 2210, 2009. Disponível em: https://en.cnki.com.cn/Article_en/CJFDTotal- WLHX200910034.htm. HAGE, D. S.; ANGUIZOLA, J. A.; JACKSON, A. J.; MATSUDA, R.; PAPASTAVROS, E.; PFAUNMILLER, E.; TONG, Z.; VARGAS-BADILLA, J.; YOO, M. J.; ZHENG, X. Chromatographic analysis of drug interactions in the serum proteome. Analytical Methods, v. 3, n. 7, p. 1449–1460, 2011. DOI: https://doi.org/10.1039/C1AY05068K. HEWSON-HUGHES, A. K.; COLYER, A.; SIMPSON, S. J.; RAUBENHEIMER, D. Balancing macronutrient intake in a mammalian carnivore: disentangling the influences of flavour and nutrition. Royal Society Open Science, v. 3, n. 6, p. 160081, 2016. DOI: https://doi.org/10.1098/rsos.160081 HIBUKAWA, A.; NAKAGAWA, T.; MIYAKE, M.; NISHIMURA, N.; TANAKA, H. Effect of protein binding on high performance liquid chromatography analysis of drugs with an internal- surface reversed-phase silica column. Chemical and Pharmaceutical Bulletin, v. 37, n. 5, p. 1311–1315, 1989. DOI: https://doi.org/10.1248/cpb.37.1311. IVLEVA, N. P.; WAGNER, M.; SAUER, K.; HORN, H.; NIESSNER, R.; HIRSCHEL, T.; HOLLER, R. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Analytical and Bioanalytical Chemistry, v. 393, n. 1, p. 197–206, 2009. DOI: 10.1007/s00216-008-2470-5. JADHAV, P.; DEORE, P.; GANGURDE, A. An overview of sustained release matrix system. International Journal of Current Science, v. 12, n. 1, p. 649–656, 2022. Disponível em: https://rjpn.org/ijcspub/papers/IJCSP22A1203.pdf. JEONG, C.; KIM, S.; LEE, C.; CHO, S.; KIM, S.-B. Changes in the physical properties of calcium alginate gel beads under a wide range of gelation temperature conditions. Foods, v. 9, n. 2, p. 180, 2020. DOI: https://doi.org/10.3390/foods9020180. JIANG, Y.; LI, C.; NGUYEN, X.; MUZAMMIL, S.; TOWERS, E.; GABRIELSON, J.; NARHI, L. Qualification of FTIR spectroscopic method for protein secondary structural analysis. Journal of Pharmaceutical Sciences, v. 100, n. 11, p. 4631–4641, 2011. DOI: https://doi.org/10.1002/jps.22686. JUAREZ, G. A. P. et al. Immunological and technical considerations in application of alginate- based microencapsulation systems. Frontiers in Bioengineering and Biotechnology, v. 2, artigo 26, 2014. Disponível em: https://doi.org/10.3389/fbioe.2014.00026. 61 KAPOOR, D. U.; PAREEK, A.; SHARMA, S.; PRAJAPATI, B. G.; THANAWUTH, K.; SRIAMORNSAK, P. Alginate gels: Chemistry, gelation mechanisms, and therapeutic applications with a focus on GERD treatment. International Journal of Pharmaceutics, v. 675, p. 125570, 2025. DOI: https://doi.org/10.1016/j.ijpharm.2025.125570. KONG, J.; YU, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, v. 39, n. 8, p. 549–559, 2007. DOI: https://doi.org/10.1111/j.1745-7270.2007.00320.x. KUNERT, J. P.; FISCHER, S.; WURZER, A.; WESTER, H. J. Albumin-mediated size exclusion chromatography: the apparent molecular weight of PSMA radioligands as novel parameter to estimate their blood clearance kinetics. Pharmaceuticals, v. 15, n. 9, p. 1161, 2022. DOI: https://doi.org/10.3390/ph15091161. KURT, O.; KAYKISIZ, K.; YILDIZ, T.; BILGIN, B. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, v. 18, n. 3, p. 81–87, 2016. DOI: https://doi.org/10.1515/pjct-2016-0052. LAI, J.; AZAD, A. K.; SULAIMAN, W. M. A. W.; KUMARASAMY, V.; SUBRAMANIYAN, V.; ALSHEHADE, S. A. Alginate-based encapsulation fabrication technique for drug delivery: an updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics, v. 16, n. 3, p. 370, 2024. DOI: https://doi.org/10.3390/pharmaceutics16030370. LANGER, R. New methods of drug delivery. Science, v. 249, n. 4976, p. 1527–1533, 1990. DOI: https://doi.org/10.1126/science.2218494 LAROSA, M.; et al. Thermal and structural behaviour of Ca–alginate beads embedded with clay nanoparticles. Journal of Molecular Structure, v. 1167, p. 351–360, 2018. DOI: https://doi.org/10.1016/j.molstruc.2018.04.026. LEI, W.; RAVONINJOHARY, A.; LI, X.; MARGOLSKEE, R. F.; REED, D. R.; BEAUCHAMP, G. K.; et al. Functional analyses of bitter taste receptors in domestic cats (Felis catus). PLoS ONE, v. 10, n. 10, e0139670, 2015. DOI: https://doi.org/10.1371/journal.pone.0139670. LI, J.; MOONEY, D. J. Designing hydrogels for controlled drug delivery. Nature Reviews Materials, v. 1, n. 12, p. 16071, 2016. DOI: https://doi.org/10.1038/natrevmats.2016.71. LI-CHAN, E. C. Y. The applications of Raman spectroscopy in food science. Trends in Food Science & Technology, v. 7, n. 11, p. 361–370, 1996. DOI: https://doi.org/10.1016/S0924- 2244(96)10037-6. LLORET, A.; HARTMANN, K.; PENNISI, M. G.; FERRER, L.; ADDIE, D.; BELÁK, S.; BOUCRAUT-BARALON, C.; EGBERINK, H.; FRYMUS, T.; GRUFFYDD-JONES, T.; HOSIE, M. J.; LUTZ, H.; MARSILIO, F.; MÖSTL, K.; RADFORD, A. D.; THIRY, E.; TRUYEN, U.; HORZINEK, M. C. Sporotrichosis in cats: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery, v. 15, n. 7, p. 619–623, 2013. DOI: https://doi.org/10.1177/1098612X13489225. 62 LOPES, C. M.; LOBO, J. M. S.; COSTA, P. Formas farmacêuticas de liberação modificada: polímeros hidrofílicos. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 2, p. 143–154, 2005. DOI: https://doi.org/10.1590/S1516-93322005000200003. LOPEZ-BLANCO, M. Los gatos domésticos han extinguido más animales que ningún otro depredador. The Conversation, 11 abr. 2024. Disponível em: https://theconversation.com/los- gatos-domesticos-han-extinguido-mas-animales-que-ningun-otro-depredador-220233. LUO, X.; FAN, S.; HE, Z.; NI, F.; LIU, C.; HUANG, M.; CAI, L.; REN, G.; ZHU, X.; LEI, Q.; FANG, W.; XIE, H. Preparation of alginate-whey protein isolate and alginate-pectin-whey protein isolate composites for protection and delivery of Lactobacillus plantarum. Food Research International, v. 161, p. 111794, 2022. DOI: https://doi.org/10.1016/j.foodres.2022.111794. MACÊDO-SALES, P. A.; SOUTO, S. R. L. S.; DESTEFANI, C. A.; et al. Domestic feline contribution in the transmission of Sporothrix in Rio de Janeiro State, Brazil: a comparison between infected and non-infected populations. BMC Veterinary Research, v. 14, art. 19, 2018. DOI: https://doi.org/10.1186/s12917-018-1340-4. MATSUURA, K.; YOSHIOKA, S.; TOSHA, T.; HORI, H.; ISHIMORI, K.; KITAGAWA, T.; MORISHIMA, I.; KAGAWA, N.; WATERMAN, M. R. Structural diversities of active site in clinical azole-bound forms between sterol 14α-demethylases (CYP51s) from human and Mycobacterium tuberculosis. Journal of Biological Chemistry, v. 280, n. 10, p. 9088–9096, 2005. DOI: https://doi.org/10.1074/jbc.M413042200. MEL0, A. V. S.; FONTES, D. A. F. Tecnologias aplicadas para prolongar a liberação de fármacos: uma revisão integrativa. Diversitas Journal, v. 8, n. 2, p. 185–202, 2023. DOI: https://doi.org/10.48017/dj.v8i2.2429. MESSION, J. L.; BLANCHARD, C.; MINT-DAH, F. V.; LAFARGE, C.; ASSIFAOUI, A.; SAUREL, R. The effects of sodium alginate and calcium levels on pea proteins cold-set gelation. Food Hydrocolloids, v. 31, n. 2, p. 446–457, 2013. DOI: https://doi.org/10.1016/j.foodhyd.2012.11.004. MERCK VETERINARY MANUAL. Overview of fungal infections in animals. 2024. Disponível em: https://www.merckvetmanual.com/infectious-diseases/fungal- infections/sporotrichosis-in-animals. MERCK VET MANUAL. Dosages of antifungal medications. Disponível em: https://www.merckvetmanual.com/multimedia/table/dosages-of-antifungal-medications. MIRZAPOUR-KOUHDASHT, A.; MCCLEMENTS, D. J.; TAGHIZADEH, M. S.; NIAZI, A.; GARCIA-VAQUERO, M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Science of Food, v. 7, n. 1, p. 22, 2023. DOI: https://doi.org/10.1038/s41538-023-00198-y. MÜLLER, M.; TORGER, B.; KESSLER, B. In situ ATR-FTIR spectroscopy on the deposition and protein interaction of polycation/alginate multilayers. Advanced Engineering Materials, v. 12, n. 12, p. 1187–1195, 2010. DOI: https://doi.org/10.1002/adem.201080059. 63 NAMBIAR, M.; SCHNEIDER, J. P. Hidrogéis peptídicos para liberação controlada por afinidade de carga terapêutica: estratégias atuais e potenciais. Journal of Peptide Science, v. 28, n. 1, e3377, 2022. DOI: https://doi.org/10.1002/psc.3377. NASTAJ, J.; PRZEWLOCKA, A.; RAJKOWSKA-MYŚLIWIEC, M. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, v. 18, n. 3, p. 81–87, 2016. DOI: https://doi.org/10.1515/pjct- 2016-0052. NICHELASON, A. E.; SCHULTZ, K. K.; BERNARD, A. J.; CAVINESS, J. E.; ALVAREZ, E. E. Oil-based compounding flavors more accepted by feline patients. Journal of the American Veterinary Medical Association, v. 261, n. 1, p. 104–110, 2022. DOI: https://doi.org/10.2460/javma.22.07.0338. NUNES, K. M. Aplicação de técnicas espectroscópicas vibracionais e imagens hiperespectrais na detecção de fraudes em carnes bovinas in natura. 2019. 132 f. Tese (Doutorado em Química) – Universidade Federal de Minas Gerais, Belo Horizonte, 2019. OCHBAUM, G.; DAVIDOVICH-PINHAS, M.; BITTON, R. Tuning the mechanical properties of alginate–peptide hydrogels. Soft Matter, v. 14, p. 4364–4373, 2018. DOI: https://doi.org/10.1039/C8SM00059J. PAŞCALĂU, V.; POPESCU, V.; POPESCU, G. L.; DUDESCU, M. C.; BORODI, G.; DINESCU, A.; PERHAIŢA, I.; PAUL, M. The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. Journal of Alloys and Compounds, v. 536, p. S418–S423, 2012. DOI: https://doi.org/10.1016/j.jallcom.2011.12.026. PAUL, P.; NANDI, G.; ABOSHEASHA, M. A.; BERA, H. Alginate-based systems for protein and peptide delivery. In: WOODHEAD PUBLISHING (ed.). Advances in pharmaceutical product development and research. Cambridge: Elsevier, 2021. p. 85–113. DOI: https://doi.org/10.1016/B978-0-12-821437-4.00011-6. PARK, I. H.; YANG, H.; KIM, J. H.; KIM, K. J. Solubility measurement study on a metastable polymorph of β-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane by Raman spectroscopy. Crystal Growth & Design, v. 19, n. 9, p. 4990–5004, 2019. DOI: https://doi.org/10.1021/acs.cgd.9b00245. PARK, K. Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release, v. 190, p. 3–8, 2014. DOI: https://doi.org/10.1016/j.jconrel.2014.03.054. PLANTINGA, E. A.; BOSCH, G.; HENDRIKS, W. H. Estimation of the dietary nutrient profile of free-roaming feral cats: possible implications for nutrition of domestic cats. British Journal of Nutrition, v. 106, supl. 1, p. S35–S48, 2011. DOI: https://doi.org/10.1017/S0007114511002285. PRYCE-LEWIS, W.; SUN, E.; SHIMIZU, K. Quantitative measurements of concentration and solubility using Raman spectroscopy. 2005. Disponível em: https://www.freepatentsonline.com/7521254.html. 64 QUINA, D. Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos. Dissertação (Mestrado em Engenharia Química) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. RAHMAN, M. M.; SHAHID, M. A.; HOSSAIN, M. T.; et al. Sources, extractions, and applications of alginate: a review. Discover Applied Sciences, v. 6, p. 443, 2024. DOI: https://doi.org/10.1007/s42452-024-06151-2. RAJMOHAN, D.; BELLMER, D. Characterization of Spirulina-alginate beads formed using ionic gelation. International Journal of Food Science, v. 2019, e7101279, 2019. DOI: https://doi.org/10.1155/2019/7101279. RAO, N. G. R.; RAJ, R. P.; NAYAK, S. Review on matrix tablet as sustained release. International Journal of Pharmaceutical Research and Applications, v. 2, n. 3, p. 57–65, 2013. Disponível em: https://sl1nk.com/D5n6H. REIS, E. G.; PEREIRA, S. A.; MIRANDA, L. H. M.; et al. Association of itraconazole and potassium iodide in the treatment of feline sporotrichosis: a prospective study. Medical Mycology, v. 54, n. 7, p. 684–690, 2016. DOI: https://doi.org/10.1093/mmy/myw027. REIS, E. G.; PEREIRA, S. A.; MIRANDA, L. H. M.; OLIVEIRA, R. V. C.; QUINTANA, M. S. B.; VIANA, P. G.; FIGUEIREDO, A. B. F.; HONORATO, C. C. S.; PEREIRA-OLIVEIRA, G. R.; SILVA, J. N.; SCHUBACH, T. M. P.; GREMIÃO, I. D. F. Um ensaio clínico randomizado comparando itraconazol e uma terapia combinada com itraconazol e iodeto de potássio para o tratamento da esporotricose felina. Journal of Fungi, v. 10, n. 2, p. 101, 2024. DOI: https://doi.org/10.3390/jof10020101. REN, Y.; WANG, Q.; XU, W.; YANG, M.; GUO, W.; HE, S.; LIU, W. Alginate-based hydrogels mediated biomedical applications: a review. International Journal of Biological Macromolecules, v. 279, parte 1, p. 135019, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135019. RODRIGUES, A. M.; DE HOOG, G. S.; DE CAMARGO, Z. P. Sporothrix species causing outbreaks in animals and humans driven by animal–animal transmission. PLoS Pathogens, v. 12, n. 7, e1005638, 2016. DOI: https://doi.org/10.1371/journal.ppat.1005638. ROSSOW, J. A.; QUEIROZ-TELLES, F.; CACERES, D. H.; et al. A One Health approach to combatting Sporothrix brasiliensis: narrative review of an emerging zoonotic fungal pathogen in South America. Journal of Fungi, v. 6, n. 4, p. 247, 2020. DOI: https://doi.org/10.3390/jof6040247. SALVE, S.; HINGNE, L.; KAMBLE, S. Development and validation of stability indicating RP- HPLC and UV-spectrophotometric method for estimation of itraconazole in bulk and formulation. Journal of Emerging Technologies and Innovative Research, v. 10, n. 8, 2023. Disponível em: https://www.jetir.org/view?paper=JETIR2308190. SANTAGAPITA, P. R.; MAZZOBRE, M. F.; BUERA, M. P. Invertase stability in alginate beads: effect of trehalose and chitosan inclusion and of drying methods. Food Research International, v. 47, n. 2, p. 321–330, 2012. DOI: https://doi.org/10.1016/j.foodres.2011.07.042. 65 SARMENTO, B.; FERREIRA, D.; VEIGA, F.; RIBEIRO, A. Characterization of insulin- loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, v. 66, n. 1, p. 1–7, 2006. DOI: https://doi.org/10.1016/j.carbpol.2006.02.008. SAVOLAINEN, S.; HAUTALA, J.; JUNNILA, J.; AIRAKSINEN, S.; JUPPO, A. M.; RAEKALLIO, M.; VAINIO, O. Acceptability of flavoured pharmaceutically non-active mini- tablets in pet cats tested with a rapid 3-portal acceptance test with and without food. Veterinary and Animal Science, v. 7, p. 100054, 2019. DOI: https://doi.org/10.1016/j.vas.2019.100054. SCHÄFER-KORTING, H.; KORTING, H. C.; AMANN, F.; PEUSER, R.; LUKACS, A. Influence of albumin on itraconazole and ketoconazole antifungal activity: results of a dynamic in vitro study. Antimicrobial Agents and Chemotherapy, v. 35, n. 10, p. 2053–2056, 1991. DOI: https://doi.org/10.1128/AAC.35.10.2053. SCHMID, T.; MESSMER, A.; YEO, B. S.; ZHANG, W.; ZENOBI, R. Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Analytical and Bioanalytical Chemistry, v. 391, n. 5, p. 1907–1916, 2008. DOI: https://doi.org/10.1007/s00216-008-2101-1. SECRETARIA DE ESTADO DE SAÚDE DO RIO DE JANEIRO (SES-RJ). Resolução SES- RJ no 674/2013 — Notificação obrigatória da esporotricose no Estado do Rio de Janeiro. Rio de Janeiro: SES-RJ, 2013. SHIBUKAWA, A.; NAKAGAWA, T.; MIYAKE, M.; NISHIMURA, N.; TANAKA, H. Effect of protein binding on high performance liquid chromatography analysis of drugs with an internal-surface reversed-phase silica column. Chemical and Pharmaceutical Bulletin, v. 37, n. 5, p. 1311–1315, 1989. DOI: https://doi.org/10.1248/cpb.37.1311. SIEPMANN, J.; SIEPMANN, F. Mathematical modeling of drug delivery. International Journal of Pharmaceutics, v. 364, n. 2, p. 328–343, 2008. DOI: https://doi.org/10.1016/j.ijpharm.2008.09.004 SILVA, M. B. et al. Esporotricose urbana: epidemia negligenciada no Rio de Janeiro, Brasil. Cadernos de Saúde Pública, Rio de Janeiro, v. 28, n. 10, p. 1867-1880, out. 2012. Disponível em: https://doi.org/10.1590/S0102-311X2012001000006. SINGH, S.; BHANDOLE, A.; LODHI, D. Review on analytical methods for estimation of itraconazole in bulk and pharmaceutical dosage form. International Journal of Research and Review, v. 8, p. 30–37, 2021. DOI: https://doi.org/10.52403/ijrr.20210506. SKJÅK-BRAEK, G.; GRASDALEN, H.; SMIDSRØD, O. Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers, v. 10, p. 31–54, 1989. DOI: https://doi.org/10.1016/0144- 8617(89)90030-4. SMALL, E. W.; PETICOLAS, W. L. Conformational dependence of the Raman scattering intensities from polynucleotides. Biopolymers, v. 10, n. 8, p. 1377–1418, 1971. DOI: https://doi.org/10.1002/bip.360100811. 66 SOARES, Gustavo Forlani et al. Esporotricose em um felino soropositivo para FeLV – relato de caso. Revista Clínica Veterinária [online], 20 nov. 2018. Disponível em: https://www.revistaclinicaveterinaria.com.br/noticias/especialidades/clinica/esporotricose-em- um-felino-soropositivo-para-felv-relato-de-caso/. SPADARI, C. C.; LOPES, L. B.; ISHIDA, K. Potential use of alginate-based carriers as antifungal delivery system. Frontiers in Microbiology, v. 8, p. 97, 2017. DOI: https://doi.org/10.3389/fmicb.2017.00097. STOGSDILL, Dennis. Foto de gato selvagem caçando flamingo ganha prêmio de imagens de natureza. G1, 11 ago. 2022. Disponível em: https://g1.globo.com/meio- ambiente/noticia/2022/08/11/foto-de-gato-selvagem-cacando-flamingo-ganha-premio-de- imagens-de-natureza-veja-outras-premiadas.ghtml. SUSI, H.; BYLER, D. M. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochemical and Biophysical Research Communications, v. 115, n. 1, p. 391–397, 1983. DOI: https://doi.org/10.1016/0006-291X(83)91016-1. TAYLOR, S.; CANEY, S.; BESSANT, C.; GUNN-MOORE, D. Online survey of owners' experiences of medicating their cats at home. Journal of Feline Medicine and Surgery, v. 24, n. 12, p. 1283–1293, 2022. DOI: https://doi.org/10.1177/1098612X221083752. TERRA INCOGNITA. O gato que extinguiu uma espécie inteira. [S.l.]: Terra Incognita, 2022. Disponível em: https://terraincognita.com.br/post/o-gato-que-extinguiu-uma-especie-inteira. THERMO SCIENTIFIC. HPLC analysis of biomolecules: technical guide – successful separations of peptides, proteins and other biomolecules. Waltham: Thermo Fisher Scientific, 2021. Disponível em: https://tools.thermofisher.com/content/sfs/brochures/TG-HPLC- Biomolecules-TGCCSBIOMOL-EN.pdf. THOTA, C.; YADAV, N.; CHAUHAN, V. Um novo hidrogel altamente estável e injetável baseado em um peptídeo ultracurto restrito conformacionalmente. Scientific Reports, v. 6, p. 31167, 2016. DOI: https://doi.org/10.1038/srep31167. UNITED STATES PHARMACOPEIAL CONVENTION. NF Monographs, Sodium Alginate. USP–NF Online, Rockville, MD, 2022. DOI: https://doi.org/10.31003/USPNF_M75750_04_01. Disponível em: https://doi.usp.org/USPNF/USPNF_M75750_04_01.html. USOLTSEV, D.; SITNIKOVA, V.; KAJAVA, A.; USPENSKAYA, M. Systematic FTIR spectroscopy study of the secondary structure changes in human serum albumin under various denaturation conditions. Biomolecules, v. 9, n. 8, p. 359, 2019. DOI: https://doi.org/10.3390/biom9080359. VALENTE, J. F. A.; DIAS, J. R.; SOUSA, A.; ALVES, N. Composite Central Face Design— An approach to achieve efficient alginate microcarriers. Polymers, v. 11, n. 12, p. 1949, 2019. DOI: https://doi.org/10.3390/polym11121949. 67 VARGAS, P. O. Secagem de partículas de alginato de cálcio. 2017. 95 f. Dissertação (Mestrado em Produção Vegetal) – Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, 2017. Disponível em: https://sl1nk.com/EetRe. VASVÁRI, G.; KALMÁR, J.; VERES, P.; VECSERNYÉS, M.; BÁCSKAY, I.; FEHÉR, P.; UJHELYI, Z.; HAIMHOFFER, Á.; RUSZNYÁK, Á.; FENYVESI, F.; VÁRADI, J. Matrix systems for oral drug delivery: formulations and drug release. Drug Discovery Today: Technologies, v. 27, p. 71–80, 2018. DOI: https://doi.org/10.1016/j.ddtec.2018.06.009. WANG, Y.; LUO, Y. H.; ZHAO, J.; et al. Selection of excipients for dispersible tablets of itraconazole through the application of thermal techniques and Raman spectroscopy. Journal of Thermal Analysis and Calorimetry, v. 115, p. 2391–2400, 2014. DOI: https://doi.org/10.1007/s10973-013-3330-x. WANG, Y.; SHEN, Z.; WANG, H.; SONG, Z.; YU, D.; LI, G.; LIU, X.; LIU, W. Progresso na pesquisa sobre géis de alginato à base de reticulação de íons metálicos. Gels, v. 11, n. 1, p. 16, 2025. DOI: https://doi.org/10.3390/gels11010016. WEE, S.; GOMBOTZ, W. R. Protein release from alginate matrices. Advanced Drug Delivery Reviews, v. 31, n. 3, p. 267–285, 1998. DOI: https://doi.org/10.1016/s0169-409x(97)00124-5. WÜTHRICH, K. Estudos de RMN de estrutura e conformação em peptídeos e proteínas. In: VAN GERVEN, L. (ed.). Ressonância Magnética Nuclear em Sólidos. NATO Advanced Study Institutes Series, v. 22. Boston: Springer, 1977. DOI: https://doi.org/10.1007/978-1-4684-2808- 7_22. XIA, E.; WANG, X.; LI, J.; LI, J.; MAN, J. Fabricação de microesferas de Ca-alginato por gelificação induzida por difusão em gotículas de emulsão dupla para insulina oral. International Journal of Biological Macromolecules, v. 277, parte 3, p. 134141, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.134141. XIE, Y.; ZHAO, J.; HUANG, R.; QI, W.; WANG, Y.; SU, R.; HE, Z. Calcium-ion-triggered co- assembly of peptide and polysaccharide into a hybrid hydrogel for drug delivery. Nanoscale Research Letters, v. 11, n. 1, p. 184, 2016. DOI: https://doi.org/10.1186/s11671-016-1415-8. YIN, B.; WANG, R.; GUO, Y.; LI, L.; HU, X. Injectable thermo-responsive peptide hydrogels with enzyme-triggered dynamic self-assembly. Polymers, v. 16, n. 9, p. 1221, 2024. DOI: https://doi.org/10.3390/polym16091221. ZHANG, Z.; GAO, J.; YUAN, L.; DUAN, B.; YANG, H.; MA, L.; LU, K. Self-assembling peptide hydrogels: design, mechanisms, characterization, and biomedical applications. Soft Matter, v. 21, n. 24, p. 5433–5453, 2025. DOI: https://doi.org/10.1039/D5SM00396B. ZHOU, Y.; XUE, S.; YANG, J. J. Calciomics: integrative studies of Ca2+-binding proteins and their interactomes in biological systems. Metallomics, v. 5, n. 1, p. 29–42, 2013. DOI: https://doi.org/10.1039/c2mt20009k. ZORAN, D. L. The carnivore connection to nutrition in cats. Journal of the American Veterinary Medical Association, v. 221, n. 11, p. 1559–1567, 2002. DOI: https://doi.org/10.2460/javma.2002.221.1559.reponame:Repositório Institucional da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJinfo:eu-repo/semantics/openAccessORIGINALDEMETRIO DE ALMEIDA QUINA.pdfDEMETRIO DE ALMEIDA QUINA.pdfapplication/pdf15122087https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/1/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf3575ca750ff0e7e765757f9b23b4d440MD51LICENSElicense.txtlicense.txttext/plain; charset=utf-81748https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/2/license.txt8a4605be74aa9ea9d79846c1fba20a33MD52TEXTDEMETRIO DE ALMEIDA QUINA.pdf.txtDEMETRIO DE ALMEIDA QUINA.pdf.txtExtracted texttext/plain151991https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/3/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf.txt249b5a19af3c0bdca1a608f5c876107bMD53THUMBNAILDEMETRIO DE ALMEIDA QUINA.pdf.jpgDEMETRIO DE ALMEIDA QUINA.pdf.jpgGenerated Thumbnailimage/jpeg1284https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/4/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf.jpga339f24c5056495e18e69307763bf947MD5420.500.14407/243232025-12-11 02:17:04.464oai:rima.ufrrj.br:20.500.14407/24323Tk9URTogUExBQ0UgWU9VUiBPV04gTElDRU5TRSBIRVJFClRoaXMgc2FtcGxlIGxpY2Vuc2UgaXMgcHJvdmlkZWQgZm9yIGluZm9ybWF0aW9uYWwgcHVycG9zZXMgb25seS4KCk5PTi1FWENMVVNJVkUgRElTVFJJQlVUSU9OIExJQ0VOU0UKCkJ5IHNpZ25pbmcgYW5kIHN1Ym1pdHRpbmcgdGhpcyBsaWNlbnNlLCB5b3UgKHRoZSBhdXRob3Iocykgb3IgY29weXJpZ2h0Cm93bmVyKSBncmFudHMgdG8gRFNwYWNlIFVuaXZlcnNpdHkgKERTVSkgdGhlIG5vbi1leGNsdXNpdmUgcmlnaHQgdG8gcmVwcm9kdWNlLAp0cmFuc2xhdGUgKGFzIGRlZmluZWQgYmVsb3cpLCBhbmQvb3IgZGlzdHJpYnV0ZSB5b3VyIHN1Ym1pc3Npb24gKGluY2x1ZGluZwp0aGUgYWJzdHJhY3QpIHdvcmxkd2lkZSBpbiBwcmludCBhbmQgZWxlY3Ryb25pYyBmb3JtYXQgYW5kIGluIGFueSBtZWRpdW0sCmluY2x1ZGluZyBidXQgbm90IGxpbWl0ZWQgdG8gYXVkaW8gb3IgdmlkZW8uCgpZb3UgYWdyZWUgdGhhdCBEU1UgbWF5LCB3aXRob3V0IGNoYW5naW5nIHRoZSBjb250ZW50LCB0cmFuc2xhdGUgdGhlCnN1Ym1pc3Npb24gdG8gYW55IG1lZGl1bSBvciBmb3JtYXQgZm9yIHRoZSBwdXJwb3NlIG9mIHByZXNlcnZhdGlvbi4KCllvdSBhbHNvIGFncmVlIHRoYXQgRFNVIG1heSBrZWVwIG1vcmUgdGhhbiBvbmUgY29weSBvZiB0aGlzIHN1Ym1pc3Npb24gZm9yCnB1cnBvc2VzIG9mIHNlY3VyaXR5LCBiYWNrLXVwIGFuZCBwcmVzZXJ2YXRpb24uCgpZb3UgcmVwcmVzZW50IHRoYXQgdGhlIHN1Ym1pc3Npb24gaXMgeW91ciBvcmlnaW5hbCB3b3JrLCBhbmQgdGhhdCB5b3UgaGF2ZQp0aGUgcmlnaHQgdG8gZ3JhbnQgdGhlIHJpZ2h0cyBjb250YWluZWQgaW4gdGhpcyBsaWNlbnNlLiBZb3UgYWxzbyByZXByZXNlbnQKdGhhdCB5b3VyIHN1Ym1pc3Npb24gZG9lcyBub3QsIHRvIHRoZSBiZXN0IG9mIHlvdXIga25vd2xlZGdlLCBpbmZyaW5nZSB1cG9uCmFueW9uZSdzIGNvcHlyaWdodC4KCklmIHRoZSBzdWJtaXNzaW9uIGNvbnRhaW5zIG1hdGVyaWFsIGZvciB3aGljaCB5b3UgZG8gbm90IGhvbGQgY29weXJpZ2h0LAp5b3UgcmVwcmVzZW50IHRoYXQgeW91IGhhdmUgb2J0YWluZWQgdGhlIHVucmVzdHJpY3RlZCBwZXJtaXNzaW9uIG9mIHRoZQpjb3B5cmlnaHQgb3duZXIgdG8gZ3JhbnQgRFNVIHRoZSByaWdodHMgcmVxdWlyZWQgYnkgdGhpcyBsaWNlbnNlLCBhbmQgdGhhdApzdWNoIHRoaXJkLXBhcnR5IG93bmVkIG1hdGVyaWFsIGlzIGNsZWFybHkgaWRlbnRpZmllZCBhbmQgYWNrbm93bGVkZ2VkCndpdGhpbiB0aGUgdGV4dCBvciBjb250ZW50IG9mIHRoZSBzdWJtaXNzaW9uLgoKSUYgVEhFIFNVQk1JU1NJT04gSVMgQkFTRUQgVVBPTiBXT1JLIFRIQVQgSEFTIEJFRU4gU1BPTlNPUkVEIE9SIFNVUFBPUlRFRApCWSBBTiBBR0VOQ1kgT1IgT1JHQU5JWkFUSU9OIE9USEVSIFRIQU4gRFNVLCBZT1UgUkVQUkVTRU5UIFRIQVQgWU9VIEhBVkUKRlVMRklMTEVEIEFOWSBSSUdIVCBPRiBSRVZJRVcgT1IgT1RIRVIgT0JMSUdBVElPTlMgUkVRVUlSRUQgQlkgU1VDSApDT05UUkFDVCBPUiBBR1JFRU1FTlQuCgpEU1Ugd2lsbCBjbGVhcmx5IGlkZW50aWZ5IHlvdXIgbmFtZShzKSBhcyB0aGUgYXV0aG9yKHMpIG9yIG93bmVyKHMpIG9mIHRoZQpzdWJtaXNzaW9uLCBhbmQgd2lsbCBub3QgbWFrZSBhbnkgYWx0ZXJhdGlvbiwgb3RoZXIgdGhhbiBhcyBhbGxvd2VkIGJ5IHRoaXMKbGljZW5zZSwgdG8geW91ciBzdWJtaXNzaW9uLgo=Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.bropendoar:2025-12-11T05:17:04Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.pt_BR.fl_str_mv Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
dc.title.alternative.en.fl_str_mv Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
title Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
spellingShingle Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
Quina, Demetrio de Almeida
Engenharia Química
Esporotricose felina
itraconazol
Alginato de Sódio
Palatabilidade
Feline sporotrichosis
Itraconazole
Sodium alginate
Palatability
title_short Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
title_full Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
title_fullStr Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
title_full_unstemmed Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
title_sort Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos.
author Quina, Demetrio de Almeida
author_facet Quina, Demetrio de Almeida
author_role author
dc.contributor.author.fl_str_mv Quina, Demetrio de Almeida
dc.contributor.advisor1.fl_str_mv Oliveira, Renata Nunes
dc.contributor.advisor1ID.fl_str_mv https://orcid.org/0000-0001-9782-269X
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/9026953896544145
dc.contributor.referee1.fl_str_mv Oliveira, Renata Nunes
dc.contributor.referee1ID.fl_str_mv https://orcid.org/0000-0001-9782-269X
dc.contributor.referee1Lattes.fl_str_mv http://lattes.cnpq.br/9026953896544145
dc.contributor.referee2.fl_str_mv Bonci, Mário Mendes
dc.contributor.referee2ID.fl_str_mv https://orcid.org/0000-0002-3837-7378
dc.contributor.referee2Lattes.fl_str_mv http://lattes.cnpq.br/6383796387620437
dc.contributor.referee3.fl_str_mv Bigansolli, Antonio Renato
dc.contributor.referee3ID.fl_str_mv https://orcid.org/0000-0002-0142-5989
dc.contributor.referee3Lattes.fl_str_mv http://lattes.cnpq.br/5868109671445446
dc.contributor.referee4.fl_str_mv Middea, Antonieta
dc.contributor.referee4Lattes.fl_str_mv http://lattes.cnpq.br/0641524479927336
dc.contributor.authorID.fl_str_mv https://orcid.org/0009-0001-4963-5555
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/2381118930933698
contributor_str_mv Oliveira, Renata Nunes
Oliveira, Renata Nunes
Bonci, Mário Mendes
Bigansolli, Antonio Renato
Middea, Antonieta
dc.subject.cnpq.fl_str_mv Engenharia Química
topic Engenharia Química
Esporotricose felina
itraconazol
Alginato de Sódio
Palatabilidade
Feline sporotrichosis
Itraconazole
Sodium alginate
Palatability
dc.subject.por.fl_str_mv Esporotricose felina
itraconazol
Alginato de Sódio
Palatabilidade
Feline sporotrichosis
Itraconazole
Sodium alginate
Palatability
description A esporotricose felina é uma micose subcutânea de relevância zoonótica crescente no Brasil, especialmente no estado do Rio de Janeiro. O tratamento com itraconazol, embora eficaz, apresenta baixa adesão por parte dos gatos, devido à rejeição ao sabor amargo e à dificuldade de administração forçada. Esta dissertação propõe a encapsulação do fármaco itraconazol em esferas de alginato de sódio saborizadas com extrato de carne, visando maior palatabilidade, adesão voluntária e eficácia terapêutica. As esferas foram produzidas por gelificação iônica e caracterizadas por FTIR (Fourier transform infrared spectroscopy), Raman, MEV (Microscopia Eletrônica de Varredura), HPLC (High Performance Liquid Chromatography) e ensaios de inibição fúngica. Os resultados confirmaram o encapsulamento, a interação entre fármaco e matriz, e a atividade antifúngica das formulações, especialmente na presença de proteínas do extrato de carne, sugerindo possível sinergia com o fármaco. A proposta apresenta viabilidade tecnológica e potencial aplicação no controle da esporotricose, oferecendo uma alternativa eficaz, acessível e adaptada ao comportamento alimentar felino.
publishDate 2025
dc.date.accessioned.fl_str_mv 2025-12-10T16:11:44Z
dc.date.available.fl_str_mv 2025-12-10T16:11:44Z
dc.date.issued.fl_str_mv 2025-09-24
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv QUINA, Demetrio de Almeida. Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos. 2025. 82 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.
dc.identifier.uri.fl_str_mv https://rima.ufrrj.br/jspui/handle/20.500.14407/24323
identifier_str_mv QUINA, Demetrio de Almeida. Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos. 2025. 82 f. Dissertação (Mestrado em Engenharia Química) - Instituto de Tecnologia, Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025.
url https://rima.ufrrj.br/jspui/handle/20.500.14407/24323
dc.language.iso.fl_str_mv por
language por
dc.relation.references.pt_BR.fl_str_mv ABOWSKA, M. B.; SKRODZKA, M.; SICIŃSKA, H.; MICHALAK, I.; DETYNA, J. Influence of cross-linking conditions on drying kinetics of alginate hydrogel. Gels, v. 9, n. 1, p. 63, 2023. DOI: https://doi.org/10.3390/gels9010063. ADAMKIEWICZ, L.; SZELESZCZUK, Ł. Review of applications of cyclodextrins as taste- masking excipients for pharmaceutical purposes. Molecules, Basel, v. 28, n. 19, p. 6964, 2023. DOI: https://doi.org/10.3390/molecules28196964. ADZMI, F.; MEON, S.; MUSA, M. H.; YUSUF, N. A. Preparation, characterisation and viability of encapsulated Trichoderma harzianum UPM40 in alginate-montmorillonite clay. Journal of Microencapsulation, v. 29, n. 3, p. 205–210, 2012. DOI: https://doi.org/10.3109/02652048.2012.659286. ALBARELLI, J. Q. et al. Encapsulação de corantes funcionais em matriz de alginato puro ou recoberto por biopolímeros. In: CONGRESSO BRASILEIRO DE POLÍMEROS, 10., 2009, Foz do Iguaçu. Anais... Foz do Iguaçu: [s.n.], 2009. Disponível em: https://www.sbpol.org.br/cbp. ALMEIDA-PAES, R.; OLIVEIRA, M. M. E.; FREITAS, D. F. S.; DO VALLE, A. C. F.; ZANCOPÉ-OLIVEIRA, R. M.; GUTIERREZ-GALHARDO, M. C. Sporotrichosis in Rio de Janeiro, Brazil: epidemiological aspects and treatment with itraconazole. Memórias do Instituto Oswaldo Cruz, v. 112, n. 1, p. 31–39, 2017. DOI: https://doi.org/10.1590/0074-02760160527. ALHUSSAINI, M. S.; ALYAHYA, A. A. A. I.; AL-GHANAYEM, A. A. Alginate-derived antibacterial and antifungal agents: a review of applications and advances (2019–2025). International Journal of Biological Macromolecules, v. 318, parte 4, p. 145333, 2025. DOI: https://doi.org/10.1016/j.ijbiomac.2025.145333. ANNISA, V.; SULAIMAN, T. N. S.; NUGROHO, A. K.; NUGROHO, A. E. Uma nova formulação de cetoconazol encapsulado em alginato com esferas de polímero aniônico para aumento da solubilidade: preparação e caracterização. Pharmacia, v. 70, n. 4, p. 1423–1438, 2023. DOI: https://doi.org/10.3897/pharmacia.70.e108120. ASSIS, G. S.; ROMANI, A. F.; SOUZA, C. M.; VENTURA, G. F.; RODRIGUES, G. A.; STELLA, A. E. Esporotricose felina e saúde pública. Veterinária e Zootecnia, v. 29, p. 001-010, 2022. BARROS, M. B. de L.; ALMEIDA-PAES, R.; SCHUBACH, A. O. Sporothrix schenckii and sporotrichosis. Clinical Microbiology Reviews, v. 24, n. 4, p. 633–654, 2011. DOI: https://doi.org/10.1128/cmr.00007-11. BASTOS, F. A. G. D.; COGNIALLI, R. C. R.; FARIAS, M. R.; et al. Spread of Sporothrix spp. through respiratory droplets from infected cats: a potential route of transmission. Medical Mycology, v. 60, n. 11, eMyac079, 2022. DOI: https://doi.org/10.1093/mmy/myac079. 57 BOECHAT, J. S.; OLIVEIRA, M. M. E.; GREMIÃO, I. D. F.; et al. Sporothrix brasiliensis and feline sporotrichosis in the metropolitan region of Rio de Janeiro, Brazil (1998–2018). Journal of Fungi, Basel, v. 8, n. 7, p. 749, 2022. DOI: https://doi.org/10.3390/jof8070749. BRILHANTE, R. S. N.; PEREIRA, V. S.; OLIVEIRA, J. S.; COUTINHO, H. D. M.; COSTA, J. G. M.; ESPOSITO, T. S.; SIDRIM, J. J. C.; ROCHA, M. F. G. Terbinafine and itraconazole in the treatment of cutaneous sporotrichosis caused by Sporothrix brasiliensis: in vitro and in vivo study. Medical Mycology, v. 54, n. 7, p. 706–712, 2016. DOI: https://doi.org/10.1093/mmy/myv039. CAMPOS-VALLETTE, M.; CHANDÍA, N. P.; CLAVIJO CAMPOS, E.; LEAL, D.; MATSUHIRO, B.; OSORIO ROMÁN, I.; TORRES, S. Characterization of sodium alginate and its block fractions by surface-enhanced Raman spectroscopy. Journal of Raman Spectroscopy, v. 41, n. 7, p. 758–763, 2010. Disponível em: https://repositorio.uchile.cl/handle/2250/119262. CARR, D. A guide to the analysis and purification of proteins and peptides by reversed-phase HPLC. Aberdeen: ACE HPLC Columns, 2010. Disponível em: https://www.hplc.eu/Downloads/ACE_Guide_Peptides.pdf. CERQUEIRA, L. B. G.; DE SOUSA, A. C.; DA SILVA, Y. M.; BASTOS, T. S. A. Esporotricose em felinos no Brasil: breve revisão de literatura. Revista Sociedade Científica, v. 7, n. 1, p. 5245-5253, 2024. DOI: https://doi.org/10.61411/rsc202484117. ÇELIK, E.; BAYRAM, C.; AKÇAPINAR, R.; TÜRK, M.; DENKBAŞ, E. B. The effect of calcium chloride concentration on alginate/Fmoc-diphenylalanine hydrogel networks. Materials Science and Engineering: C, v. 66, p. 221–229, 2016. DOI: https://doi.org/10.1016/j.msec.2016.04.084. CHANGCHAROENSUK, C.; PHONGPHISUTTHINAN, A.; PICHAYAKORN, W.; CHAIPETCH, P.; WANICHPAKORN, P.; MANKHONGPHITHAKKUL, S.; SONGKRAM, C. Formulation, optimization, and evaluation of extemporaneous potassium chloride-loaded alginate beads. Science & Technology Asia, v. 28, n. 2, p. 196–203, 2023. DOI: https://doi.org/10.14456/scitechasia.2023.38. CHAUDHARI, S. A.; KAR, J. R.; SINGHAL, R. S. Immobilization of proteins in alginate: functional properties and applications. Current Protein & Peptide Science, v. 19, n. 17, p. 1732– 1754, 2015. DOI: https://doi.org/10.2174/1385272819666150429232110. CHENG, Y.; LUO, X.; BETZ, J.; PAYNE, G. F.; BENTLEY, W. E.; RUBLOFF, G. W. Mechanism of anodic electrodeposition of calcium alginate. Soft Matter, v. 7, p. 5677–5684, 2011. DOI: https://doi.org/10.1039/c0sm01428a. CIARLEGLIO, G.; CINTI, F.; TOTO, E.; SANTONICOLA, M. G. Synthesis and characterization of alginate gel beads with embedded zeolite structures as carriers of hydrophobic curcumin. Gels, v. 9, n. 9, p. 714, 2023. DOI: https://doi.org/10.3390/gels9090714. COLOMBAN, P.; SLODCZYK, A. Raman intensity: an important tool in the study of nanomaterials and nanostructures. Acta Physica Polonica A, v. 116, n. 1, p. 7–12, 2009a. Disponível em: http://przyrbwn.icm.edu.pl/APP/PDF/116/a116z101.pdf. 58 COLOMBAN, P.; SLODCZYK, A. Raman intensity: an important tool to study the structure and phase transitions of amorphous/crystalline materials. Optical Materials, v. 31, n. 12, p. 1759–1763, 2009. DOI: https://doi.org/10.1016/j.optmat.2008.12.030. COUNCIL OF EUROPE. European Pharmacopoeia. 11. ed., monografia 0625 “Sodium Alginate”. Strasbourg: EDQM, 2023. Disponível em (acesso restrito por assinatura): https://pheur.edqm.eu/. DALAL, S. R.; HUSSEIN, M. H.; EL-NAGGAR, N. E.; MOSTAFA, S. I.; SHAABAN- DESSUUKI, S. A. Characterization of alginate extracted from Sargassum latifolium and its use in Chlorella vulgaris growth promotion and riboflavin drug delivery. Scientific Reports, v. 11, n. 1, p. 16741, 2021. DOI: https://doi.org/10.1038/s41598-021-96202-0. DAVARCI, F.; TURAN, D.; OZCELIK, B.; PONCELET, D. The influence of solution viscosities and surface tension on calcium-alginate microbead formation using dripping technique. Food Hydrocolloids, v. 62, p. 119-127, 2017. DOI: https://doi.org/10.1016/j.foodhyd.2016.07.004. DE BEER, T.; BAEYENS, W. R. G.; OUYANG, J.; VERVAET, C.; REMON, J. P. Raman spectroscopy as a process analytical technology tool for the understanding and the quantitative in-line monitoring of the homogenization process of a pharmaceutical suspension. Analyst, v. 131, n. 10, p. 1137–1144, 2006. DOI: https://doi.org/10.1039/B605299A. DE MELO TEIXEIRA, M.; et al. Phylogenetic analysis reveals a high level of speciation in the Paracoccidioides genus. Molecular Phylogenetics and Evolution, v. 52, n. 2, p. 273–283, 2009. DOI: https://doi.org/10.1016/j.ympev.2009.04.005. DERKACH, S. R.; VORON'KO, N. G.; SOKOLAN, N. I.; KOLOTOVA, D. S.; KUCHINA, Y. A. Interações entre gelatina e alginato de sódio: estudos UV e FTIR. Journal of Dispersion Science and Technology, v. 41, n. 5, p. 690–698, 2019. DOI: https://doi.org/10.1080/01932691.2019.1611437. Dobroslavić, E.; Cegledi, E.; Robić, K.; Elez Garofulić, I.; Dragović-Uzelac, V.; Repajić, M. Encapsulation of Fennel Essential Oil in Calcium Alginate Microbeads via Electrostatic Extrusion. Applied Sciences, v. 14, n. 8, p. 3522, 2024. DOI: hƩps://doi.org/10.3390/app14083522. DONG, A.; HUANG, P.; CAUGHEY, W. S. Protein secondary structures in water from second- derivative amide I infrared spectra. Biochemistry, v. 29, n. 13, p. 3303–3308, 1990. DOI: https://doi.org/10.1021/bi00465a022. EKWEREMADU, C. S.; ABDELHAKIM, H. E.; CRAIG, D. Q. M.; BARKER, S. A. Development and evaluation of feline tailored amlodipine besylate mini-tablets using L-lysine as a candidate flavouring agent. Pharmaceutics, v. 12, n. 10, p. 917, 2020. DOI: https://doi.org/10.3390/pharmaceutics12100917. EMAMI, S.; VALIZADEH, H.; ISLAMBULCHILAR, Z.; ZAKERI-MILANI, P. Development and physicochemical characterization of sirolimus solid dispersions prepared by solvent evaporation method. Advanced Pharmaceutical Bulletin, v. 4, n. 4, p. 369–374, 2014. DOI: https://doi.org/10.5681/apb.2014.054. 59 EUROPEAN MEDICINES AGENCY. Guideline on the demonstration of palatability of veterinary medicinal products. EMA/CVMP/EWP/206024/2011. London, 2012. EUROPEAN UNION. Regulation (EC) No 1333/2008 of the European Parliament and of the Council on food additives. Official Journal of the European Union, 31 dez. 2008. Anexo II – código E-401 (sodium alginate). EVERALL, N. J. Raman spectroscopy of the condensed phase. In: CHALMERS, J. M.; GRIFFITHS, P. R. (ed.). Handbook of Vibrational Spectroscopy. Chichester: John Wiley & Sons, 2006. FALCÃO, E. M. M.; ROMÃO, A. R.; MAGALHÃES, M. A. F. M.; et al. A spatial analysis of the spread of hyperendemic sporotrichosis in the State of Rio de Janeiro, Brazil. Journal of Fungi, v. 8, n. 5, p. 434, 2022. DOI: https://doi.org/10.3390/jof8050434. FERNANDES, R. S.; MOURA, M. R.; GLENN, G. M.; AOUADA, F. A. Thermal, microstructural, and spectroscopic analysis of Ca2+ alginate/clay nanocomposite hydrogel beads. Journal of Molecular Liquids, v. 265, p. 327–336, 2018. DOI: https://doi.org/10.1016/j.molliq.2018.05.107. FERREIRA, Q. S.; SILVA, J. R.; SILVA, R. C.; PY-DANIEL, K. R.; AZEVEDO, R. B.; MORAIS, P. C.; SILVA, S. W. Surface-enhanced Raman spectroscopy for successful probing of itraconazole within poly(lactic-co-glycolic acid) nanoparticles. Journal of Raman Spectroscopy, v. 50, n. 7, p. 1085–1093, 2019. DOI: https://doi.org/10.1002/jrs.5628. FERREIRA, V. C. D.; FIGUEIREDO, A. B. F.; MAGALHÃES, M. A. F. M.; PEREIRA, S. A.; TASSINARI, W. Distribuição temporal e espacial da esporotricose na Região Metropolitana do Rio de Janeiro, Brasil: uma comparação de casos humanos e animais (2013–2020). Cadernos de Saúde Pública, v. 41, n. 2, e00133024, 2025. DOI: https://doi.org/10.1590/0102- 311XEN133024. FOODADDITIVES.NET. Sodium alginate (E-401): uses, structure, side effects. 2024. Disponível em: https://foodadditives.net/thickeners/sodium-alginate/. GONÇALVES, S. S.; POLA, C. C.; HOCKE, A. C.; et al. Sporothrix brasiliensis: epidemiology, clinical aspects, and antifungal susceptibility profiles. Journal of Fungi, v. 9, n. 8, p. 831, 2023. DOI: https://doi.org/10.3390/jof9080831. GRANT, G. T.; MORRIS, E. R.; REES, D. A.; SMITH, P. J. C.; THOM, D. Biological interactions between polysaccharides and divalent cations: the egg-box model. FEBS Letters, v. 32, n. 1, p. 195–198, 1973. DOI: https://doi.org/10.1016/0014-5793(73)80770-7. GREMIÃO, I. D. F.; MENEZES, R. C.; SCHUBACH, T. M. P.; et al. Feline sporotrichosis: epidemiological and clinical aspects. Medical Mycology, v. 53, n. 1, p. 15–21, 2015. DOI: https://doi.org/10.1093/mmy/myu061. GREMIÃO, I. D. F.; MIRANDA, L. H. M.; PEREIRA-OLIVEIRA, G. R.; MENEZES, R. C.; MACHADO, A. C. S.; RODRIGUES, A. M.; PEREIRA, S. A. Advances and challenges in the management of feline sporotrichosis. Revista Ibero-Americana de Micologia, v. 39, n. 3–4, p. 61–67, 2022. DOI: https://doi.org/10.1016/j.riam.2022.05.002. 60 GREMIÃO, I. D. F.; OLIVEIRA, M. M. E.; BARROS, M. B. L.; et al. Zoonotic epidemic of sporotrichosis: cat to human transmission. PLoS Pathogens, v. 13, n. 1, e1006077, 2017. DOI: https://doi.org/10.1371/journal.ppat.1006077. GULL, T.; ABUELO, A. Sporotrichosis in animals. MSD Veterinary Manual (versão profissional). Atualizado set. 2024. Disponível em: https://www.merckvetmanual.com/infectious-diseases/fungal-infections/sporotrichosis-in- animals. GUO, Q. Characterization of the interactions between itraconazole and human and bovine serum albumins by a spectroscopic method. Acta Physico-Chimica Sinica, v. 25, n. 11, p. 2205– 2210, 2009. Disponível em: https://en.cnki.com.cn/Article_en/CJFDTotal- WLHX200910034.htm. HAGE, D. S.; ANGUIZOLA, J. A.; JACKSON, A. J.; MATSUDA, R.; PAPASTAVROS, E.; PFAUNMILLER, E.; TONG, Z.; VARGAS-BADILLA, J.; YOO, M. J.; ZHENG, X. Chromatographic analysis of drug interactions in the serum proteome. Analytical Methods, v. 3, n. 7, p. 1449–1460, 2011. DOI: https://doi.org/10.1039/C1AY05068K. HEWSON-HUGHES, A. K.; COLYER, A.; SIMPSON, S. J.; RAUBENHEIMER, D. Balancing macronutrient intake in a mammalian carnivore: disentangling the influences of flavour and nutrition. Royal Society Open Science, v. 3, n. 6, p. 160081, 2016. DOI: https://doi.org/10.1098/rsos.160081 HIBUKAWA, A.; NAKAGAWA, T.; MIYAKE, M.; NISHIMURA, N.; TANAKA, H. Effect of protein binding on high performance liquid chromatography analysis of drugs with an internal- surface reversed-phase silica column. Chemical and Pharmaceutical Bulletin, v. 37, n. 5, p. 1311–1315, 1989. DOI: https://doi.org/10.1248/cpb.37.1311. IVLEVA, N. P.; WAGNER, M.; SAUER, K.; HORN, H.; NIESSNER, R.; HIRSCHEL, T.; HOLLER, R. Towards a nondestructive chemical characterization of biofilm matrix by Raman microscopy. Analytical and Bioanalytical Chemistry, v. 393, n. 1, p. 197–206, 2009. DOI: 10.1007/s00216-008-2470-5. JADHAV, P.; DEORE, P.; GANGURDE, A. An overview of sustained release matrix system. International Journal of Current Science, v. 12, n. 1, p. 649–656, 2022. Disponível em: https://rjpn.org/ijcspub/papers/IJCSP22A1203.pdf. JEONG, C.; KIM, S.; LEE, C.; CHO, S.; KIM, S.-B. Changes in the physical properties of calcium alginate gel beads under a wide range of gelation temperature conditions. Foods, v. 9, n. 2, p. 180, 2020. DOI: https://doi.org/10.3390/foods9020180. JIANG, Y.; LI, C.; NGUYEN, X.; MUZAMMIL, S.; TOWERS, E.; GABRIELSON, J.; NARHI, L. Qualification of FTIR spectroscopic method for protein secondary structural analysis. Journal of Pharmaceutical Sciences, v. 100, n. 11, p. 4631–4641, 2011. DOI: https://doi.org/10.1002/jps.22686. JUAREZ, G. A. P. et al. Immunological and technical considerations in application of alginate- based microencapsulation systems. Frontiers in Bioengineering and Biotechnology, v. 2, artigo 26, 2014. Disponível em: https://doi.org/10.3389/fbioe.2014.00026. 61 KAPOOR, D. U.; PAREEK, A.; SHARMA, S.; PRAJAPATI, B. G.; THANAWUTH, K.; SRIAMORNSAK, P. Alginate gels: Chemistry, gelation mechanisms, and therapeutic applications with a focus on GERD treatment. International Journal of Pharmaceutics, v. 675, p. 125570, 2025. DOI: https://doi.org/10.1016/j.ijpharm.2025.125570. KONG, J.; YU, S. Fourier transform infrared spectroscopic analysis of protein secondary structures. Acta Biochimica et Biophysica Sinica, v. 39, n. 8, p. 549–559, 2007. DOI: https://doi.org/10.1111/j.1745-7270.2007.00320.x. KUNERT, J. P.; FISCHER, S.; WURZER, A.; WESTER, H. J. Albumin-mediated size exclusion chromatography: the apparent molecular weight of PSMA radioligands as novel parameter to estimate their blood clearance kinetics. Pharmaceuticals, v. 15, n. 9, p. 1161, 2022. DOI: https://doi.org/10.3390/ph15091161. KURT, O.; KAYKISIZ, K.; YILDIZ, T.; BILGIN, B. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, v. 18, n. 3, p. 81–87, 2016. DOI: https://doi.org/10.1515/pjct-2016-0052. LAI, J.; AZAD, A. K.; SULAIMAN, W. M. A. W.; KUMARASAMY, V.; SUBRAMANIYAN, V.; ALSHEHADE, S. A. Alginate-based encapsulation fabrication technique for drug delivery: an updated review of particle type, formulation technique, pharmaceutical ingredient, and targeted delivery system. Pharmaceutics, v. 16, n. 3, p. 370, 2024. DOI: https://doi.org/10.3390/pharmaceutics16030370. LANGER, R. New methods of drug delivery. Science, v. 249, n. 4976, p. 1527–1533, 1990. DOI: https://doi.org/10.1126/science.2218494 LAROSA, M.; et al. Thermal and structural behaviour of Ca–alginate beads embedded with clay nanoparticles. Journal of Molecular Structure, v. 1167, p. 351–360, 2018. DOI: https://doi.org/10.1016/j.molstruc.2018.04.026. LEI, W.; RAVONINJOHARY, A.; LI, X.; MARGOLSKEE, R. F.; REED, D. R.; BEAUCHAMP, G. K.; et al. Functional analyses of bitter taste receptors in domestic cats (Felis catus). PLoS ONE, v. 10, n. 10, e0139670, 2015. DOI: https://doi.org/10.1371/journal.pone.0139670. LI, J.; MOONEY, D. J. Designing hydrogels for controlled drug delivery. Nature Reviews Materials, v. 1, n. 12, p. 16071, 2016. DOI: https://doi.org/10.1038/natrevmats.2016.71. LI-CHAN, E. C. Y. The applications of Raman spectroscopy in food science. Trends in Food Science & Technology, v. 7, n. 11, p. 361–370, 1996. DOI: https://doi.org/10.1016/S0924- 2244(96)10037-6. LLORET, A.; HARTMANN, K.; PENNISI, M. G.; FERRER, L.; ADDIE, D.; BELÁK, S.; BOUCRAUT-BARALON, C.; EGBERINK, H.; FRYMUS, T.; GRUFFYDD-JONES, T.; HOSIE, M. J.; LUTZ, H.; MARSILIO, F.; MÖSTL, K.; RADFORD, A. D.; THIRY, E.; TRUYEN, U.; HORZINEK, M. C. Sporotrichosis in cats: ABCD guidelines on prevention and management. Journal of Feline Medicine and Surgery, v. 15, n. 7, p. 619–623, 2013. DOI: https://doi.org/10.1177/1098612X13489225. 62 LOPES, C. M.; LOBO, J. M. S.; COSTA, P. Formas farmacêuticas de liberação modificada: polímeros hidrofílicos. Revista Brasileira de Ciências Farmacêuticas, v. 41, n. 2, p. 143–154, 2005. DOI: https://doi.org/10.1590/S1516-93322005000200003. LOPEZ-BLANCO, M. Los gatos domésticos han extinguido más animales que ningún otro depredador. The Conversation, 11 abr. 2024. Disponível em: https://theconversation.com/los- gatos-domesticos-han-extinguido-mas-animales-que-ningun-otro-depredador-220233. LUO, X.; FAN, S.; HE, Z.; NI, F.; LIU, C.; HUANG, M.; CAI, L.; REN, G.; ZHU, X.; LEI, Q.; FANG, W.; XIE, H. Preparation of alginate-whey protein isolate and alginate-pectin-whey protein isolate composites for protection and delivery of Lactobacillus plantarum. Food Research International, v. 161, p. 111794, 2022. DOI: https://doi.org/10.1016/j.foodres.2022.111794. MACÊDO-SALES, P. A.; SOUTO, S. R. L. S.; DESTEFANI, C. A.; et al. Domestic feline contribution in the transmission of Sporothrix in Rio de Janeiro State, Brazil: a comparison between infected and non-infected populations. BMC Veterinary Research, v. 14, art. 19, 2018. DOI: https://doi.org/10.1186/s12917-018-1340-4. MATSUURA, K.; YOSHIOKA, S.; TOSHA, T.; HORI, H.; ISHIMORI, K.; KITAGAWA, T.; MORISHIMA, I.; KAGAWA, N.; WATERMAN, M. R. Structural diversities of active site in clinical azole-bound forms between sterol 14α-demethylases (CYP51s) from human and Mycobacterium tuberculosis. Journal of Biological Chemistry, v. 280, n. 10, p. 9088–9096, 2005. DOI: https://doi.org/10.1074/jbc.M413042200. MEL0, A. V. S.; FONTES, D. A. F. Tecnologias aplicadas para prolongar a liberação de fármacos: uma revisão integrativa. Diversitas Journal, v. 8, n. 2, p. 185–202, 2023. DOI: https://doi.org/10.48017/dj.v8i2.2429. MESSION, J. L.; BLANCHARD, C.; MINT-DAH, F. V.; LAFARGE, C.; ASSIFAOUI, A.; SAUREL, R. The effects of sodium alginate and calcium levels on pea proteins cold-set gelation. Food Hydrocolloids, v. 31, n. 2, p. 446–457, 2013. DOI: https://doi.org/10.1016/j.foodhyd.2012.11.004. MERCK VETERINARY MANUAL. Overview of fungal infections in animals. 2024. Disponível em: https://www.merckvetmanual.com/infectious-diseases/fungal- infections/sporotrichosis-in-animals. MERCK VET MANUAL. Dosages of antifungal medications. Disponível em: https://www.merckvetmanual.com/multimedia/table/dosages-of-antifungal-medications. MIRZAPOUR-KOUHDASHT, A.; MCCLEMENTS, D. J.; TAGHIZADEH, M. S.; NIAZI, A.; GARCIA-VAQUERO, M. Strategies for oral delivery of bioactive peptides with focus on debittering and masking. NPJ Science of Food, v. 7, n. 1, p. 22, 2023. DOI: https://doi.org/10.1038/s41538-023-00198-y. MÜLLER, M.; TORGER, B.; KESSLER, B. In situ ATR-FTIR spectroscopy on the deposition and protein interaction of polycation/alginate multilayers. Advanced Engineering Materials, v. 12, n. 12, p. 1187–1195, 2010. DOI: https://doi.org/10.1002/adem.201080059. 63 NAMBIAR, M.; SCHNEIDER, J. P. Hidrogéis peptídicos para liberação controlada por afinidade de carga terapêutica: estratégias atuais e potenciais. Journal of Peptide Science, v. 28, n. 1, e3377, 2022. DOI: https://doi.org/10.1002/psc.3377. NASTAJ, J.; PRZEWLOCKA, A.; RAJKOWSKA-MYŚLIWIEC, M. Biosorption of Ni(II), Pb(II) and Zn(II) on calcium alginate beads: equilibrium, kinetic and mechanism studies. Polish Journal of Chemical Technology, v. 18, n. 3, p. 81–87, 2016. DOI: https://doi.org/10.1515/pjct- 2016-0052. NICHELASON, A. E.; SCHULTZ, K. K.; BERNARD, A. J.; CAVINESS, J. E.; ALVAREZ, E. E. Oil-based compounding flavors more accepted by feline patients. Journal of the American Veterinary Medical Association, v. 261, n. 1, p. 104–110, 2022. DOI: https://doi.org/10.2460/javma.22.07.0338. NUNES, K. M. Aplicação de técnicas espectroscópicas vibracionais e imagens hiperespectrais na detecção de fraudes em carnes bovinas in natura. 2019. 132 f. Tese (Doutorado em Química) – Universidade Federal de Minas Gerais, Belo Horizonte, 2019. OCHBAUM, G.; DAVIDOVICH-PINHAS, M.; BITTON, R. Tuning the mechanical properties of alginate–peptide hydrogels. Soft Matter, v. 14, p. 4364–4373, 2018. DOI: https://doi.org/10.1039/C8SM00059J. PAŞCALĂU, V.; POPESCU, V.; POPESCU, G. L.; DUDESCU, M. C.; BORODI, G.; DINESCU, A.; PERHAIŢA, I.; PAUL, M. The alginate/k-carrageenan ratio’s influence on the properties of the cross-linked composite films. Journal of Alloys and Compounds, v. 536, p. S418–S423, 2012. DOI: https://doi.org/10.1016/j.jallcom.2011.12.026. PAUL, P.; NANDI, G.; ABOSHEASHA, M. A.; BERA, H. Alginate-based systems for protein and peptide delivery. In: WOODHEAD PUBLISHING (ed.). Advances in pharmaceutical product development and research. Cambridge: Elsevier, 2021. p. 85–113. DOI: https://doi.org/10.1016/B978-0-12-821437-4.00011-6. PARK, I. H.; YANG, H.; KIM, J. H.; KIM, K. J. Solubility measurement study on a metastable polymorph of β-2,4,6,8,10,12-hexanitro-2,4,6,8,10,12-hexaazaisowurtzitane by Raman spectroscopy. Crystal Growth & Design, v. 19, n. 9, p. 4990–5004, 2019. DOI: https://doi.org/10.1021/acs.cgd.9b00245. PARK, K. Controlled drug delivery systems: Past forward and future back. Journal of Controlled Release, v. 190, p. 3–8, 2014. DOI: https://doi.org/10.1016/j.jconrel.2014.03.054. PLANTINGA, E. A.; BOSCH, G.; HENDRIKS, W. H. Estimation of the dietary nutrient profile of free-roaming feral cats: possible implications for nutrition of domestic cats. British Journal of Nutrition, v. 106, supl. 1, p. S35–S48, 2011. DOI: https://doi.org/10.1017/S0007114511002285. PRYCE-LEWIS, W.; SUN, E.; SHIMIZU, K. Quantitative measurements of concentration and solubility using Raman spectroscopy. 2005. Disponível em: https://www.freepatentsonline.com/7521254.html. 64 QUINA, D. Encapsulamento do fármaco itraconazol com alginato de sódio e sabor carne para tratamento da esporotricose em gatos. Dissertação (Mestrado em Engenharia Química) – Universidade Federal Rural do Rio de Janeiro, Seropédica, 2025. RAHMAN, M. M.; SHAHID, M. A.; HOSSAIN, M. T.; et al. Sources, extractions, and applications of alginate: a review. Discover Applied Sciences, v. 6, p. 443, 2024. DOI: https://doi.org/10.1007/s42452-024-06151-2. RAJMOHAN, D.; BELLMER, D. Characterization of Spirulina-alginate beads formed using ionic gelation. International Journal of Food Science, v. 2019, e7101279, 2019. DOI: https://doi.org/10.1155/2019/7101279. RAO, N. G. R.; RAJ, R. P.; NAYAK, S. Review on matrix tablet as sustained release. International Journal of Pharmaceutical Research and Applications, v. 2, n. 3, p. 57–65, 2013. Disponível em: https://sl1nk.com/D5n6H. REIS, E. G.; PEREIRA, S. A.; MIRANDA, L. H. M.; et al. Association of itraconazole and potassium iodide in the treatment of feline sporotrichosis: a prospective study. Medical Mycology, v. 54, n. 7, p. 684–690, 2016. DOI: https://doi.org/10.1093/mmy/myw027. REIS, E. G.; PEREIRA, S. A.; MIRANDA, L. H. M.; OLIVEIRA, R. V. C.; QUINTANA, M. S. B.; VIANA, P. G.; FIGUEIREDO, A. B. F.; HONORATO, C. C. S.; PEREIRA-OLIVEIRA, G. R.; SILVA, J. N.; SCHUBACH, T. M. P.; GREMIÃO, I. D. F. Um ensaio clínico randomizado comparando itraconazol e uma terapia combinada com itraconazol e iodeto de potássio para o tratamento da esporotricose felina. Journal of Fungi, v. 10, n. 2, p. 101, 2024. DOI: https://doi.org/10.3390/jof10020101. REN, Y.; WANG, Q.; XU, W.; YANG, M.; GUO, W.; HE, S.; LIU, W. Alginate-based hydrogels mediated biomedical applications: a review. International Journal of Biological Macromolecules, v. 279, parte 1, p. 135019, 2024. DOI: https://doi.org/10.1016/j.ijbiomac.2024.135019. RODRIGUES, A. M.; DE HOOG, G. S.; DE CAMARGO, Z. P. Sporothrix species causing outbreaks in animals and humans driven by animal–animal transmission. PLoS Pathogens, v. 12, n. 7, e1005638, 2016. DOI: https://doi.org/10.1371/journal.ppat.1005638. ROSSOW, J. A.; QUEIROZ-TELLES, F.; CACERES, D. H.; et al. A One Health approach to combatting Sporothrix brasiliensis: narrative review of an emerging zoonotic fungal pathogen in South America. Journal of Fungi, v. 6, n. 4, p. 247, 2020. DOI: https://doi.org/10.3390/jof6040247. SALVE, S.; HINGNE, L.; KAMBLE, S. Development and validation of stability indicating RP- HPLC and UV-spectrophotometric method for estimation of itraconazole in bulk and formulation. Journal of Emerging Technologies and Innovative Research, v. 10, n. 8, 2023. Disponível em: https://www.jetir.org/view?paper=JETIR2308190. SANTAGAPITA, P. R.; MAZZOBRE, M. F.; BUERA, M. P. Invertase stability in alginate beads: effect of trehalose and chitosan inclusion and of drying methods. Food Research International, v. 47, n. 2, p. 321–330, 2012. DOI: https://doi.org/10.1016/j.foodres.2011.07.042. 65 SARMENTO, B.; FERREIRA, D.; VEIGA, F.; RIBEIRO, A. Characterization of insulin- loaded alginate nanoparticles produced by ionotropic pre-gelation through DSC and FTIR studies. Carbohydrate Polymers, v. 66, n. 1, p. 1–7, 2006. DOI: https://doi.org/10.1016/j.carbpol.2006.02.008. SAVOLAINEN, S.; HAUTALA, J.; JUNNILA, J.; AIRAKSINEN, S.; JUPPO, A. M.; RAEKALLIO, M.; VAINIO, O. Acceptability of flavoured pharmaceutically non-active mini- tablets in pet cats tested with a rapid 3-portal acceptance test with and without food. Veterinary and Animal Science, v. 7, p. 100054, 2019. DOI: https://doi.org/10.1016/j.vas.2019.100054. SCHÄFER-KORTING, H.; KORTING, H. C.; AMANN, F.; PEUSER, R.; LUKACS, A. Influence of albumin on itraconazole and ketoconazole antifungal activity: results of a dynamic in vitro study. Antimicrobial Agents and Chemotherapy, v. 35, n. 10, p. 2053–2056, 1991. DOI: https://doi.org/10.1128/AAC.35.10.2053. SCHMID, T.; MESSMER, A.; YEO, B. S.; ZHANG, W.; ZENOBI, R. Towards chemical analysis of nanostructures in biofilms II: tip-enhanced Raman spectroscopy of alginates. Analytical and Bioanalytical Chemistry, v. 391, n. 5, p. 1907–1916, 2008. DOI: https://doi.org/10.1007/s00216-008-2101-1. SECRETARIA DE ESTADO DE SAÚDE DO RIO DE JANEIRO (SES-RJ). Resolução SES- RJ no 674/2013 — Notificação obrigatória da esporotricose no Estado do Rio de Janeiro. Rio de Janeiro: SES-RJ, 2013. SHIBUKAWA, A.; NAKAGAWA, T.; MIYAKE, M.; NISHIMURA, N.; TANAKA, H. Effect of protein binding on high performance liquid chromatography analysis of drugs with an internal-surface reversed-phase silica column. Chemical and Pharmaceutical Bulletin, v. 37, n. 5, p. 1311–1315, 1989. DOI: https://doi.org/10.1248/cpb.37.1311. SIEPMANN, J.; SIEPMANN, F. Mathematical modeling of drug delivery. International Journal of Pharmaceutics, v. 364, n. 2, p. 328–343, 2008. DOI: https://doi.org/10.1016/j.ijpharm.2008.09.004 SILVA, M. B. et al. Esporotricose urbana: epidemia negligenciada no Rio de Janeiro, Brasil. Cadernos de Saúde Pública, Rio de Janeiro, v. 28, n. 10, p. 1867-1880, out. 2012. Disponível em: https://doi.org/10.1590/S0102-311X2012001000006. SINGH, S.; BHANDOLE, A.; LODHI, D. Review on analytical methods for estimation of itraconazole in bulk and pharmaceutical dosage form. International Journal of Research and Review, v. 8, p. 30–37, 2021. DOI: https://doi.org/10.52403/ijrr.20210506. SKJÅK-BRAEK, G.; GRASDALEN, H.; SMIDSRØD, O. Inhomogeneous polysaccharide ionic gels. Carbohydrate Polymers, v. 10, p. 31–54, 1989. DOI: https://doi.org/10.1016/0144- 8617(89)90030-4. SMALL, E. W.; PETICOLAS, W. L. Conformational dependence of the Raman scattering intensities from polynucleotides. Biopolymers, v. 10, n. 8, p. 1377–1418, 1971. DOI: https://doi.org/10.1002/bip.360100811. 66 SOARES, Gustavo Forlani et al. Esporotricose em um felino soropositivo para FeLV – relato de caso. Revista Clínica Veterinária [online], 20 nov. 2018. Disponível em: https://www.revistaclinicaveterinaria.com.br/noticias/especialidades/clinica/esporotricose-em- um-felino-soropositivo-para-felv-relato-de-caso/. SPADARI, C. C.; LOPES, L. B.; ISHIDA, K. Potential use of alginate-based carriers as antifungal delivery system. Frontiers in Microbiology, v. 8, p. 97, 2017. DOI: https://doi.org/10.3389/fmicb.2017.00097. STOGSDILL, Dennis. Foto de gato selvagem caçando flamingo ganha prêmio de imagens de natureza. G1, 11 ago. 2022. Disponível em: https://g1.globo.com/meio- ambiente/noticia/2022/08/11/foto-de-gato-selvagem-cacando-flamingo-ganha-premio-de- imagens-de-natureza-veja-outras-premiadas.ghtml. SUSI, H.; BYLER, D. M. Protein structure by Fourier transform infrared spectroscopy: second derivative spectra. Biochemical and Biophysical Research Communications, v. 115, n. 1, p. 391–397, 1983. DOI: https://doi.org/10.1016/0006-291X(83)91016-1. TAYLOR, S.; CANEY, S.; BESSANT, C.; GUNN-MOORE, D. Online survey of owners' experiences of medicating their cats at home. Journal of Feline Medicine and
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de Pós-Graduação em Engenharia Química
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Tecnologia
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Repositório Institucional da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Repositório Institucional da UFRRJ
collection Repositório Institucional da UFRRJ
bitstream.url.fl_str_mv https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/1/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/2/license.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/3/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf.txt
https://rima.ufrrj.br/jspui/bitstream/20.500.14407/24323/4/DEMETRIO%20DE%20ALMEIDA%20QUINA.pdf.jpg
bitstream.checksum.fl_str_mv 3575ca750ff0e7e765757f9b23b4d440
8a4605be74aa9ea9d79846c1fba20a33
249b5a19af3c0bdca1a608f5c876107b
a339f24c5056495e18e69307763bf947
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Repositório Institucional da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br
_version_ 1854400083341082624