Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose

Detalhes bibliográficos
Ano de defesa: 2015
Autor(a) principal: Goulart, Paula do Nascimento lattes
Orientador(a): Silva, Clarissa Oliveira da lattes
Banca de defesa: Barbosa, Andre Gustavo Horta, Pereira, Marcio Soares
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
Idioma: por
Instituição de defesa: Universidade Federal Rural do Rio de Janeiro
Programa de Pós-Graduação: Programa de P?s-Gradua??o em Qu?mica
Departamento: Instituto de Ci?ncias Exatas
País: Brasil
Palavras-chave em Português:
Palavras-chave em Inglês:
Área do conhecimento CNPq:
Link de acesso: https://tede.ufrrj.br/jspui/handle/jspui/4161
Resumo: Carbohydrates are the most abundant class of compounds in nature, performing several different biological and metabolic functions, besides several industrial applications. The existence of many hydroxyl groups that may interact in different orientations allows different conformational possibilities to be investigated. Data obtained for xylose indicate that this pentose with an hydrophobic substituent, is able to promote a bonding (it acts as a primer of a sequence of four tetrasaccharides) between the glycosaminglycans and the extracellular proteins in tumor cells. This attachment contributes considerably to the decrease of proliferation and nutrition of tumor cells, acting on a selective way. The objective of this work is to identify the most stable conformations of the molecule of ?-naphthylxylose, and from these results to better understand the nature of the interaction between carbohydrate and protein in future works. Firstly, it is necessary to perform a conformational study in the gas phase, in solution (PCM) and expliciting a solvent molecule from the bulk, including optimization geometry calculations, frequency, population and specific rotation calculations. For these calculations, Density Functional Theory (DFT) will be used with a 6-31+G(d,p) basis functions, that was proven to be suited for the treatment of large size carbohydrates. The number of conformers to be investigated for this system is determined by the several positions that each of the three hydroxyl group in the molecule can assume individually, besides the orientation of the naphtyl group. Initially, considering the dihedral ?1, ?2, ?3 and ?4, respectively defined by the sequence of atoms (C?naftil-C1-O1-O5), (H2 O2 C2-C1), (C3 H3 O3-C2) and (-H4 O4 C3 -C4) geometry optimization calculations were performed in the gas phase for 81 conformational possibilities. Combining the six values of dihedral angle found for the ?naftil group orienattio (C?naftil C?naftil-C1-O1-) - obtained from the construction of potential energy surface, with the twelve most stable conformations found in the first part of this study, seventy two possibilities to be investigated were generated, from which was obtained fifty-one conformations after geometry optimization calculations. For the nineteen most stable conformations, were performed calculations in solution (PCM) as well as expliciting one molecule of the solvent from the bulk solution. New geometry optimization, frequency and specific rotation calculations were performed. For the system solvated in PCM, the value of specific rotation was found as -70.12 ? / dm (g / cm3) and for the microsolvated system the value found for this property was -42.82 ? / (dm (g / cm 3). Comparing these values, it is possible to observe that the latter is closest to that experimental value, which is -32 ? / (dm (g / cm3).
id UFRRJ-1_e6c19de00f8a028cf03ab1ded9eef270
oai_identifier_str oai:localhost:jspui/4161
network_acronym_str UFRRJ-1
network_name_str Biblioteca Digital de Teses e Dissertações da UFRRJ
repository_id_str
spelling Silva, Clarissa Oliveira da014.109.957-71http://lattes.cnpq.br/3211933004567550Barbosa, Andre Gustavo HortaPereira, Marcio Soares124.600.037-73http://lattes.cnpq.br/3473118225634771Goulart, Paula do Nascimento2020-11-19T13:19:10Z2015-08-27GOULART, Paula do Nascimento. Investiga??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose. 2015. 64 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2015.https://tede.ufrrj.br/jspui/handle/jspui/4161Carbohydrates are the most abundant class of compounds in nature, performing several different biological and metabolic functions, besides several industrial applications. The existence of many hydroxyl groups that may interact in different orientations allows different conformational possibilities to be investigated. Data obtained for xylose indicate that this pentose with an hydrophobic substituent, is able to promote a bonding (it acts as a primer of a sequence of four tetrasaccharides) between the glycosaminglycans and the extracellular proteins in tumor cells. This attachment contributes considerably to the decrease of proliferation and nutrition of tumor cells, acting on a selective way. The objective of this work is to identify the most stable conformations of the molecule of ?-naphthylxylose, and from these results to better understand the nature of the interaction between carbohydrate and protein in future works. Firstly, it is necessary to perform a conformational study in the gas phase, in solution (PCM) and expliciting a solvent molecule from the bulk, including optimization geometry calculations, frequency, population and specific rotation calculations. For these calculations, Density Functional Theory (DFT) will be used with a 6-31+G(d,p) basis functions, that was proven to be suited for the treatment of large size carbohydrates. The number of conformers to be investigated for this system is determined by the several positions that each of the three hydroxyl group in the molecule can assume individually, besides the orientation of the naphtyl group. Initially, considering the dihedral ?1, ?2, ?3 and ?4, respectively defined by the sequence of atoms (C?naftil-C1-O1-O5), (H2 O2 C2-C1), (C3 H3 O3-C2) and (-H4 O4 C3 -C4) geometry optimization calculations were performed in the gas phase for 81 conformational possibilities. Combining the six values of dihedral angle found for the ?naftil group orienattio (C?naftil C?naftil-C1-O1-) - obtained from the construction of potential energy surface, with the twelve most stable conformations found in the first part of this study, seventy two possibilities to be investigated were generated, from which was obtained fifty-one conformations after geometry optimization calculations. For the nineteen most stable conformations, were performed calculations in solution (PCM) as well as expliciting one molecule of the solvent from the bulk solution. New geometry optimization, frequency and specific rotation calculations were performed. For the system solvated in PCM, the value of specific rotation was found as -70.12 ? / dm (g / cm3) and for the microsolvated system the value found for this property was -42.82 ? / (dm (g / cm 3). Comparing these values, it is possible to observe that the latter is closest to that experimental value, which is -32 ? / (dm (g / cm3).Os carboidratos s?o compostos abundantes na natureza, desempenhando muitas fun??es biol?gicas, metab?licas e com diversas aplica??es industriais. A presen?a de grupos hidroxila e outros grupos substituintes e as poss?veis orienta??es que esses grupos podem assumir s?o fatores que permitem diferentes possibilidades conformacionais a serem investigadas. Dados obtidos para a xilose mostram que esta pentose, com um substituinte hidrof?bico, ao funcionar como inicializador promovendo a liga??o entre os glicosaminoglicanos e as prote?nas extracelulares nas c?lulas cancerosas, contribui de maneira consider?vel para que a prolifera??o e nutri??o das c?lulas tumorais sejam diminu?das, agindo de modo seletivo. O objetivo deste trabalho ? obter as conforma??es mais est?veis da mol?cula de ?-naftil-xilose, para a partir destes resultados melhor entender a natureza da intera??o carboidrato-prote?na em estudos futuros. Essa obten??o consiste no seu estudo conformacional em fase gasosa, em solu??o (PCM) e em solu??o explicitando as mol?culas do solvente, incluindo otimiza??o de geometrias, c?lculos de frequ?ncia, c?lculos de popula??o e c?lculos de rota??o espec?fica. Para esses c?lculos ser? utilizada a Teoria do Funcional da Densidade (DFT) com o funcional B3LYP e fun??es de base tipo 6-31+G(d,p), uma combina??o que se mostra apropriada para o tratamento de carboidratos de tamanho moderado a grande. O n?mero de conf?rmeros a serem investigados para essa obten??o ? determinado pelas diferentes posi??es que cada um dos tr?s grupamento hidroxila da mol?cula pode assumir individualmente, al?m daquela do grupo naftil. Inicialmente, considerando os diedros ?1, ?2, ?3 e ?4, definidos respectivamente pelas sequ?ncias de ?tomos (C?naftil?O1-C1-O5), (H2-O2-C2-C1), (H3-O3-C3-C2) e (H4-O4-C4-C3), foram feitos c?lculos de otimiza??o de geometria em fase gasosa para as 81 possibilidades conformacionais. Combinando os seis valores de m?nimo de ?ngulo diedro ?naftil (C?naftil-C?naftil?O1-C1) ? obtidos a partir da constru??o da superf?cie de energia potencial com as 12 conforma??es mais est?veis encontradas na primeira etapa, 72 possibilidades a serem investigadas foram constru?das, a partir das quais foram obtidas 51 conforma??es. Para as 19 conforma??es mais est?veis, foram realizados c?lculos em solu??o (PCM) e tamb?m explicitando as mol?culas do solvente (microsolvata??o) com nova otimiza??o de geometria, c?lculos de frequ?ncia e c?lculos de rota??o espec?fica. Para o sistema solvatado em PCM, o valor de rota??o espec?fica encontrado foi de -70,12 ?/dm(g/cm3) e para o sistema microsolvatado o valor encontrado para esta propriedade foi de -42,82 ?/(dm(g/cm3). Comparando-se os valores encontrados para o sistema em PCM e explicitando-se as mol?culas de solvente, observa-se que para o sistema microsolvatado o valor da propriedade analisada se aproxima mais daquele experimental, que ? de -32?/(dm(g/cm3).Submitted by Sandra Pereira (srpereira@ufrrj.br) on 2020-11-19T13:19:10Z No. of bitstreams: 1 2015 - Paula do Nascimento Goulart.pdf: 2148722 bytes, checksum: 67aaae66bf860815294081f9d5b97fae (MD5)Made available in DSpace on 2020-11-19T13:19:10Z (GMT). No. of bitstreams: 1 2015 - Paula do Nascimento Goulart.pdf: 2148722 bytes, checksum: 67aaae66bf860815294081f9d5b97fae (MD5) Previous issue date: 2015-08-27CNPq - Conselho Nacional de Desenvolvimento Cient?fico e Tecnol?gicoapplication/pdfhttps://tede.ufrrj.br/retrieve/63076/2015%20-%20Paula%20do%20Nascimento%20Goulart.pdf.jpgporUniversidade Federal Rural do Rio de JaneiroPrograma de P?s-Gradua??o em Qu?micaUFRRJBrasilInstituto de Ci?ncias Exatas1 http://revistaepoca.globo.com/Revista/Epoca/0,,EMI73435-15257,00.html, consultado em 19/01/2015. 2http://qnint.sbq.org.br/qni/popup_visualizarMolecula.php?id=N46O8_aHhyCmeUe0VyK7YfjrtZ17qbXNAPizKU0WdhrgqgtCX8 NhHQxXJHLnH1gZTvzRFNfNCrXxEP4njfW9Q, consultado em 11/08/2015. 3http://www2.iq.usp.br/docente/nadja/Metabolismo_glicogenio.pdf, consultado em 11/08/2015. 4 Parmanhan, B. R.; Farias P. P.; Corr?a, A. G. A import?ncia crescente dos carboidratos em qu?mica medicinal Nogueira C. M.;* Rev. Virtual Quim., 2009, 1 (2), 149-159. 5http://www.elmhurst.edu/~chm/vchembook/images/543chairglucose.gif , acessado em 12/12/2014. 6 http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch25/ch25-3-3.html, acessado em 17/01/2015. 7 Rao, V. S. R.; Qasba, P. K.; Baslaji, P. V.; Chandrasekaran, R. Conformation of Carbohydrates; Harwood Academic: Amsterdam, 1998. 8 Schnupf, U.; Willett, J. l.; Momany, F. Dftmd studies of glucose and epimers: anomeric ratios, rotamer populations and hydration energies. Carbohydr. Res. 2010, 345, 503-511, citado por Andrade, R. R.; Silva, C. O. . Mini-Reviews in Organic Chemistry, 2011, 8, 239-248. 9 Roslund, M. U.; T?htinen,P.; Niemitzc, M. ; Sj?holm, R. Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohyd. Res. 2008, 343, 101-112. 10 Zhu, Y.; Zajicek, J.; Serianni, A. S. Acyclic forms of [1-13C] aldohexoses in aqueous solution: quantification by 13C NMR and deuterium isotope effects on tautomeric equilibria. J.Org. Chem. 2001, 66, 6244-6251. 62 11 Molteni, C.; Parrinello, M. Condensed matter effects on the structure of crystalline glucose. Chem. Phys. Lett. 1997, 275, 409-413, citado por Andrade, R. R.; Silva, C. O. . Mini-Reviews in Organic Chemistry, 2011, 8, 239-248. 12Siegbahn, Anna et al. Synthesis, conformation and biology of naphthoxylosides. Bioorganic & Medicinal Chemistry,Center For Analysis And Synthesis, Chemical Center, Lund University, Po Box 124, Se-221 00 Lund, Sweden, p.4114-4126, 10 maio 2011. 13 http://bemfalar.com/significado/neovascularizacao.html, consultado em 19/12/2014. 14 http://www.organic.lu.se/people/ulf%20ellervik/ellervikresearchgroup/Research.html, consultado em 19/12/2015. 15 Wormald, M. R.; Petrescu, A. J.; Pao, Y-L; Glithero, A.; Elliott, T.; Dwek, R. A. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography and molecular modelling. Chem. Rev. 2002, 102, 371-386. 16 Molteni, C.; Parrinello, M. Condensed matter effects on the structure of crystalline glucose.Chem. Phys. Lett. 1997, 275, 409-413. 17 Andrade, R. R.; Silva, C. O. Specific rotation as a property to validate monosaccharide conformations. Carbohyd. Res.2012, 350, 62-67. 18 Fran?a, B. A. ; Silva, C. O. . Specific rotation of monosaccharides: a global property bringing local information. Physical Chemistry Chemical Physics. 2014, 16, 13096-13102. 19 Kirkwood, John G.. The Dielectric Polarization of Polar Liquids*. Journal Of Chemical Physics, Baker Laboratory, Cornell University, Ithaca, New York, p.911-919, 6 out. 1939. 20 Applequist, Jon; Carl, James R.; Fung, Kwok-kueng. Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc., v. 94, n. 9, p.2952-2960, maio 1972. American Chemical Society (ACS). DOI: 10.1021/ja00764a010. 21 Polavarapu, P.L.;Ewig,C.S. Ab initio computed molecular-structures and energies of the conformers of glucose. J. Comput.Chem. 1992, 13, 1255?1261. 22 Sedl?k, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization. The Journal of Physical Chemistry B, v. 110, n. 9, p. 4329-4338, 2006. 63 23Morgon, N. H., M?todos de Qu?mica Te?rica e Modelagem Molecular. Livraria da F?sica, 2007. 24 Kohn, W.; Sham, L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, California, v. 140, p.1133-1138, 21 jun. 1965. 25 Becke, A. D.. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, Queen?s University, Kingston, Ontario, Canada, v. 38, n. 6, p.3098-3100, 1 set. 1988. American Physical Society (APS) 26Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface-charges (ASC) methods in solvation problems-iterative versus matrix-inversion procedures and the renormalization of the apparentecharges. J. Comp. Chem., 1995, 16, 1449. 27Cance`S, E.; Tomasi, B. Mennucci And J.. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal Of Chemical Physics, Cermics, Ecole Nationale Des Ponts Et Chausse?es, 6 & 8 Avenue Blaise Pascal, Cite? Descartes, 77455 Champs-sur-marne Cedex 2, France, p.3032-3041, 22 maio 1997. 28Mennucci, B; Canc?s, E; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem., 1997, 101, 10506. 29Amovilli, C.; Barone, V.; Cammi, R.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi J. Journal Advanced Quantum Chemistry, 1998, 32, 227. 30Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models.Chemical Reviews, 2005, 105, 2999. 31Andrade, Renato R.; Silva, Clarissa O. da. On the Route of the Determination of Monosaccharides Conformations. Mini-reviews In Organic Chemistry, Universidade Federal Rural do Rio de Janeiro, Br 465, Km 47 - Serop?dica, Rio de Janeiro, Brazil, p.239-248, 2011. 32 Csonka, G.I. Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates. J. Mol. Struct. (Theochem), 2002, 584,1-4; 33 Csonka, G.I., French, A. D., Johnson, G. P., Stortz, C. A. J. Chem. Theory Comp., 2009, 5, 679-692. 34 Goulart, P. N. Conforma??es mais est?veis da naftil xilose. 2011. Trabalho de Conclus?o de Curso (Monografia, Fisicoquimica) ? UFRRJ, RJ. 35 Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J. Calculation of optical rotation using density functional theory. J. Phys. Chem. A, 2001, 105, 5356. 64 36 Gaussian 03, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004. 37 Bochevarov, Art D. et al. Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences. International Journal Of Quantum Chemistry, 120 West 45th St, 17th Floor, New York, New York,, p.2110-2142, 2013. 38 Comunica??o pessoal com?-naftilxiloseconforma??o de carboidratosrota??o espec?fica?-naphthylxylopiranosecarbohydrate conformationspecific rotationQu?micaObten??o das conforma??es mais est?veis da mol?cula de ?-naftilxiloseInvestigation of the most stable conformations of ?-naphtylxylose moleculeinfo:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisinfo:eu-repo/semantics/openAccessreponame:Biblioteca Digital de Teses e Dissertações da UFRRJinstname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)instacron:UFRRJTHUMBNAIL2015 - Paula do Nascimento Goulart.pdf.jpg2015 - Paula do Nascimento Goulart.pdf.jpgimage/jpeg2005http://localhost:8080/tede/bitstream/jspui/4161/4/2015+-+Paula+do+Nascimento+Goulart.pdf.jpg0aa4e23b844af201c30959d76e1f3018MD54TEXT2015 - Paula do Nascimento Goulart.pdf.txt2015 - Paula do Nascimento Goulart.pdf.txttext/plain88221http://localhost:8080/tede/bitstream/jspui/4161/3/2015+-+Paula+do+Nascimento+Goulart.pdf.txt7425dd18626ec3e1c7079c0e98a8b44aMD53ORIGINAL2015 - Paula do Nascimento Goulart.pdf2015 - Paula do Nascimento Goulart.pdfapplication/pdf2148722http://localhost:8080/tede/bitstream/jspui/4161/2/2015+-+Paula+do+Nascimento+Goulart.pdf67aaae66bf860815294081f9d5b97faeMD52LICENSElicense.txtlicense.txttext/plain; charset=utf-82089http://localhost:8080/tede/bitstream/jspui/4161/1/license.txt7b5ba3d2445355f386edab96125d42b7MD51jspui/41612022-05-27 17:25:27.976oai:localhost:jspui/4161Tk9UQTogQ09MT1FVRSBBUVVJIEEgU1VBIFBSP1BSSUEgTElDRU4/QQpFc3RhIGxpY2VuP2EgZGUgZXhlbXBsbyA/IGZvcm5lY2lkYSBhcGVuYXMgcGFyYSBmaW5zIGluZm9ybWF0aXZvcy4KCkxJQ0VOP0EgREUgRElTVFJJQlVJPz9PIE4/Ty1FWENMVVNJVkEKCkNvbSBhIGFwcmVzZW50YT8/byBkZXN0YSBsaWNlbj9hLCB2b2M/IChvIGF1dG9yIChlcykgb3UgbyB0aXR1bGFyIGRvcyBkaXJlaXRvcyBkZSBhdXRvcikgY29uY2VkZSA/IFVuaXZlcnNpZGFkZSAKWFhYIChTaWdsYSBkYSBVbml2ZXJzaWRhZGUpIG8gZGlyZWl0byBuP28tZXhjbHVzaXZvIGRlIHJlcHJvZHV6aXIsICB0cmFkdXppciAoY29uZm9ybWUgZGVmaW5pZG8gYWJhaXhvKSwgZS9vdSAKZGlzdHJpYnVpciBhIHN1YSB0ZXNlIG91IGRpc3NlcnRhPz9vIChpbmNsdWluZG8gbyByZXN1bW8pIHBvciB0b2RvIG8gbXVuZG8gbm8gZm9ybWF0byBpbXByZXNzbyBlIGVsZXRyP25pY28gZSAKZW0gcXVhbHF1ZXIgbWVpbywgaW5jbHVpbmRvIG9zIGZvcm1hdG9zID91ZGlvIG91IHY/ZGVvLgoKVm9jPyBjb25jb3JkYSBxdWUgYSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgcG9kZSwgc2VtIGFsdGVyYXIgbyBjb250ZT9kbywgdHJhbnNwb3IgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byAKcGFyYSBxdWFscXVlciBtZWlvIG91IGZvcm1hdG8gcGFyYSBmaW5zIGRlIHByZXNlcnZhPz9vLgoKVm9jPyB0YW1iP20gY29uY29yZGEgcXVlIGEgU2lnbGEgZGUgVW5pdmVyc2lkYWRlIHBvZGUgbWFudGVyIG1haXMgZGUgdW1hIGM/cGlhIGEgc3VhIHRlc2Ugb3UgCmRpc3NlcnRhPz9vIHBhcmEgZmlucyBkZSBzZWd1cmFuP2EsIGJhY2stdXAgZSBwcmVzZXJ2YT8/by4KClZvYz8gZGVjbGFyYSBxdWUgYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byA/IG9yaWdpbmFsIGUgcXVlIHZvYz8gdGVtIG8gcG9kZXIgZGUgY29uY2VkZXIgb3MgZGlyZWl0b3MgY29udGlkb3MgCm5lc3RhIGxpY2VuP2EuIFZvYz8gdGFtYj9tIGRlY2xhcmEgcXVlIG8gZGVwP3NpdG8gZGEgc3VhIHRlc2Ugb3UgZGlzc2VydGE/P28gbj9vLCBxdWUgc2VqYSBkZSBzZXUgCmNvbmhlY2ltZW50bywgaW5mcmluZ2UgZGlyZWl0b3MgYXV0b3JhaXMgZGUgbmluZ3U/bS4KCkNhc28gYSBzdWEgdGVzZSBvdSBkaXNzZXJ0YT8/byBjb250ZW5oYSBtYXRlcmlhbCBxdWUgdm9jPyBuP28gcG9zc3VpIGEgdGl0dWxhcmlkYWRlIGRvcyBkaXJlaXRvcyBhdXRvcmFpcywgdm9jPyAKZGVjbGFyYSBxdWUgb2J0ZXZlIGEgcGVybWlzcz9vIGlycmVzdHJpdGEgZG8gZGV0ZW50b3IgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIHBhcmEgY29uY2VkZXIgPyBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgCm9zIGRpcmVpdG9zIGFwcmVzZW50YWRvcyBuZXN0YSBsaWNlbj9hLCBlIHF1ZSBlc3NlIG1hdGVyaWFsIGRlIHByb3ByaWVkYWRlIGRlIHRlcmNlaXJvcyBlc3Q/IGNsYXJhbWVudGUgCmlkZW50aWZpY2FkbyBlIHJlY29uaGVjaWRvIG5vIHRleHRvIG91IG5vIGNvbnRlP2RvIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28gb3JhIGRlcG9zaXRhZGEuCgpDQVNPIEEgVEVTRSBPVSBESVNTRVJUQT8/TyBPUkEgREVQT1NJVEFEQSBURU5IQSBTSURPIFJFU1VMVEFETyBERSBVTSBQQVRST0M/TklPIE9VIApBUE9JTyBERSBVTUEgQUc/TkNJQSBERSBGT01FTlRPIE9VIE9VVFJPIE9SR0FOSVNNTyBRVUUgTj9PIFNFSkEgQSBTSUdMQSBERSAKVU5JVkVSU0lEQURFLCBWT0M/IERFQ0xBUkEgUVVFIFJFU1BFSVRPVSBUT0RPUyBFIFFVQUlTUVVFUiBESVJFSVRPUyBERSBSRVZJUz9PIENPTU8gClRBTUI/TSBBUyBERU1BSVMgT0JSSUdBPz9FUyBFWElHSURBUyBQT1IgQ09OVFJBVE8gT1UgQUNPUkRPLgoKQSBTaWdsYSBkZSBVbml2ZXJzaWRhZGUgc2UgY29tcHJvbWV0ZSBhIGlkZW50aWZpY2FyIGNsYXJhbWVudGUgbyBzZXUgbm9tZSAocykgb3UgbyhzKSBub21lKHMpIGRvKHMpIApkZXRlbnRvcihlcykgZG9zIGRpcmVpdG9zIGF1dG9yYWlzIGRhIHRlc2Ugb3UgZGlzc2VydGE/P28sIGUgbj9vIGZhcj8gcXVhbHF1ZXIgYWx0ZXJhPz9vLCBhbD9tIGRhcXVlbGFzIApjb25jZWRpZGFzIHBvciBlc3RhIGxpY2VuP2EuCg==Biblioteca Digital de Teses e Dissertaçõeshttps://tede.ufrrj.br/PUBhttps://tede.ufrrj.br/oai/requestbibliot@ufrrj.br||bibliot@ufrrj.bropendoar:2022-05-27T20:25:27Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)false
dc.title.por.fl_str_mv Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
dc.title.alternative.eng.fl_str_mv Investigation of the most stable conformations of ?-naphtylxylose molecule
title Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
spellingShingle Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
Goulart, Paula do Nascimento
?-naftilxilose
conforma??o de carboidratos
rota??o espec?fica
?-naphthylxylopiranose
carbohydrate conformation
specific rotation
Qu?mica
title_short Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
title_full Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
title_fullStr Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
title_full_unstemmed Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
title_sort Obten??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose
author Goulart, Paula do Nascimento
author_facet Goulart, Paula do Nascimento
author_role author
dc.contributor.advisor1.fl_str_mv Silva, Clarissa Oliveira da
dc.contributor.advisor1ID.fl_str_mv 014.109.957-71
dc.contributor.advisor1Lattes.fl_str_mv http://lattes.cnpq.br/3211933004567550
dc.contributor.referee1.fl_str_mv Barbosa, Andre Gustavo Horta
dc.contributor.referee2.fl_str_mv Pereira, Marcio Soares
dc.contributor.authorID.fl_str_mv 124.600.037-73
dc.contributor.authorLattes.fl_str_mv http://lattes.cnpq.br/3473118225634771
dc.contributor.author.fl_str_mv Goulart, Paula do Nascimento
contributor_str_mv Silva, Clarissa Oliveira da
Barbosa, Andre Gustavo Horta
Pereira, Marcio Soares
dc.subject.por.fl_str_mv ?-naftilxilose
conforma??o de carboidratos
rota??o espec?fica
topic ?-naftilxilose
conforma??o de carboidratos
rota??o espec?fica
?-naphthylxylopiranose
carbohydrate conformation
specific rotation
Qu?mica
dc.subject.eng.fl_str_mv ?-naphthylxylopiranose
carbohydrate conformation
specific rotation
dc.subject.cnpq.fl_str_mv Qu?mica
description Carbohydrates are the most abundant class of compounds in nature, performing several different biological and metabolic functions, besides several industrial applications. The existence of many hydroxyl groups that may interact in different orientations allows different conformational possibilities to be investigated. Data obtained for xylose indicate that this pentose with an hydrophobic substituent, is able to promote a bonding (it acts as a primer of a sequence of four tetrasaccharides) between the glycosaminglycans and the extracellular proteins in tumor cells. This attachment contributes considerably to the decrease of proliferation and nutrition of tumor cells, acting on a selective way. The objective of this work is to identify the most stable conformations of the molecule of ?-naphthylxylose, and from these results to better understand the nature of the interaction between carbohydrate and protein in future works. Firstly, it is necessary to perform a conformational study in the gas phase, in solution (PCM) and expliciting a solvent molecule from the bulk, including optimization geometry calculations, frequency, population and specific rotation calculations. For these calculations, Density Functional Theory (DFT) will be used with a 6-31+G(d,p) basis functions, that was proven to be suited for the treatment of large size carbohydrates. The number of conformers to be investigated for this system is determined by the several positions that each of the three hydroxyl group in the molecule can assume individually, besides the orientation of the naphtyl group. Initially, considering the dihedral ?1, ?2, ?3 and ?4, respectively defined by the sequence of atoms (C?naftil-C1-O1-O5), (H2 O2 C2-C1), (C3 H3 O3-C2) and (-H4 O4 C3 -C4) geometry optimization calculations were performed in the gas phase for 81 conformational possibilities. Combining the six values of dihedral angle found for the ?naftil group orienattio (C?naftil C?naftil-C1-O1-) - obtained from the construction of potential energy surface, with the twelve most stable conformations found in the first part of this study, seventy two possibilities to be investigated were generated, from which was obtained fifty-one conformations after geometry optimization calculations. For the nineteen most stable conformations, were performed calculations in solution (PCM) as well as expliciting one molecule of the solvent from the bulk solution. New geometry optimization, frequency and specific rotation calculations were performed. For the system solvated in PCM, the value of specific rotation was found as -70.12 ? / dm (g / cm3) and for the microsolvated system the value found for this property was -42.82 ? / (dm (g / cm 3). Comparing these values, it is possible to observe that the latter is closest to that experimental value, which is -32 ? / (dm (g / cm3).
publishDate 2015
dc.date.issued.fl_str_mv 2015-08-27
dc.date.accessioned.fl_str_mv 2020-11-19T13:19:10Z
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.citation.fl_str_mv GOULART, Paula do Nascimento. Investiga??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose. 2015. 64 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2015.
dc.identifier.uri.fl_str_mv https://tede.ufrrj.br/jspui/handle/jspui/4161
identifier_str_mv GOULART, Paula do Nascimento. Investiga??o das conforma??es mais est?veis da mol?cula de ?-naftilxilose. 2015. 64 f. Disserta??o (Mestrado em Qu?mica) - Instituto de Qu?mica, Universidade Federal Rural do Rio de Janeiro, Serop?dica, 2015.
url https://tede.ufrrj.br/jspui/handle/jspui/4161
dc.language.iso.fl_str_mv por
language por
dc.relation.references.por.fl_str_mv 1 http://revistaepoca.globo.com/Revista/Epoca/0,,EMI73435-15257,00.html, consultado em 19/01/2015. 2http://qnint.sbq.org.br/qni/popup_visualizarMolecula.php?id=N46O8_aHhyCmeUe0VyK7YfjrtZ17qbXNAPizKU0WdhrgqgtCX8 NhHQxXJHLnH1gZTvzRFNfNCrXxEP4njfW9Q, consultado em 11/08/2015. 3http://www2.iq.usp.br/docente/nadja/Metabolismo_glicogenio.pdf, consultado em 11/08/2015. 4 Parmanhan, B. R.; Farias P. P.; Corr?a, A. G. A import?ncia crescente dos carboidratos em qu?mica medicinal Nogueira C. M.;* Rev. Virtual Quim., 2009, 1 (2), 149-159. 5http://www.elmhurst.edu/~chm/vchembook/images/543chairglucose.gif , acessado em 12/12/2014. 6 http://www.chem.ucalgary.ca/courses/350/Carey5th/Ch25/ch25-3-3.html, acessado em 17/01/2015. 7 Rao, V. S. R.; Qasba, P. K.; Baslaji, P. V.; Chandrasekaran, R. Conformation of Carbohydrates; Harwood Academic: Amsterdam, 1998. 8 Schnupf, U.; Willett, J. l.; Momany, F. Dftmd studies of glucose and epimers: anomeric ratios, rotamer populations and hydration energies. Carbohydr. Res. 2010, 345, 503-511, citado por Andrade, R. R.; Silva, C. O. . Mini-Reviews in Organic Chemistry, 2011, 8, 239-248. 9 Roslund, M. U.; T?htinen,P.; Niemitzc, M. ; Sj?holm, R. Complete assignments of the 1H and 13C chemical shifts and JH,H coupling constants in NMR spectra of D-glucopyranose and all D-glucopyranosyl-D-glucopyranosides. Carbohyd. Res. 2008, 343, 101-112. 10 Zhu, Y.; Zajicek, J.; Serianni, A. S. Acyclic forms of [1-13C] aldohexoses in aqueous solution: quantification by 13C NMR and deuterium isotope effects on tautomeric equilibria. J.Org. Chem. 2001, 66, 6244-6251. 62 11 Molteni, C.; Parrinello, M. Condensed matter effects on the structure of crystalline glucose. Chem. Phys. Lett. 1997, 275, 409-413, citado por Andrade, R. R.; Silva, C. O. . Mini-Reviews in Organic Chemistry, 2011, 8, 239-248. 12Siegbahn, Anna et al. Synthesis, conformation and biology of naphthoxylosides. Bioorganic & Medicinal Chemistry,Center For Analysis And Synthesis, Chemical Center, Lund University, Po Box 124, Se-221 00 Lund, Sweden, p.4114-4126, 10 maio 2011. 13 http://bemfalar.com/significado/neovascularizacao.html, consultado em 19/12/2014. 14 http://www.organic.lu.se/people/ulf%20ellervik/ellervikresearchgroup/Research.html, consultado em 19/12/2015. 15 Wormald, M. R.; Petrescu, A. J.; Pao, Y-L; Glithero, A.; Elliott, T.; Dwek, R. A. Conformational studies of oligosaccharides and glycopeptides: complementarity of NMR, X-ray crystallography and molecular modelling. Chem. Rev. 2002, 102, 371-386. 16 Molteni, C.; Parrinello, M. Condensed matter effects on the structure of crystalline glucose.Chem. Phys. Lett. 1997, 275, 409-413. 17 Andrade, R. R.; Silva, C. O. Specific rotation as a property to validate monosaccharide conformations. Carbohyd. Res.2012, 350, 62-67. 18 Fran?a, B. A. ; Silva, C. O. . Specific rotation of monosaccharides: a global property bringing local information. Physical Chemistry Chemical Physics. 2014, 16, 13096-13102. 19 Kirkwood, John G.. The Dielectric Polarization of Polar Liquids*. Journal Of Chemical Physics, Baker Laboratory, Cornell University, Ithaca, New York, p.911-919, 6 out. 1939. 20 Applequist, Jon; Carl, James R.; Fung, Kwok-kueng. Atom dipole interaction model for molecular polarizability. Application to polyatomic molecules and determination of atom polarizabilities. J. Am. Chem. Soc., v. 94, n. 9, p.2952-2960, maio 1972. American Chemical Society (ACS). DOI: 10.1021/ja00764a010. 21 Polavarapu, P.L.;Ewig,C.S. Ab initio computed molecular-structures and energies of the conformers of glucose. J. Comput.Chem. 1992, 13, 1255?1261. 22 Sedl?k, M. Large-Scale Supramolecular Structure in Solutions of Low Molar Mass Compounds and Mixtures of Liquids: I. Light Scattering Characterization. The Journal of Physical Chemistry B, v. 110, n. 9, p. 4329-4338, 2006. 63 23Morgon, N. H., M?todos de Qu?mica Te?rica e Modelagem Molecular. Livraria da F?sica, 2007. 24 Kohn, W.; Sham, L. J.. Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review, California, v. 140, p.1133-1138, 21 jun. 1965. 25 Becke, A. D.. Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A, Queen?s University, Kingston, Ontario, Canada, v. 38, n. 6, p.3098-3100, 1 set. 1988. American Physical Society (APS) 26Cammi, R.; Tomasi, J. Remarks on the use of the apparent surface-charges (ASC) methods in solvation problems-iterative versus matrix-inversion procedures and the renormalization of the apparentecharges. J. Comp. Chem., 1995, 16, 1449. 27Cance`S, E.; Tomasi, B. Mennucci And J.. A new integral equation formalism for the polarizable continuum model: Theoretical background and applications to isotropic and anisotropic dielectrics. The Journal Of Chemical Physics, Cermics, Ecole Nationale Des Ponts Et Chausse?es, 6 & 8 Avenue Blaise Pascal, Cite? Descartes, 77455 Champs-sur-marne Cedex 2, France, p.3032-3041, 22 maio 1997. 28Mennucci, B; Canc?s, E; Tomasi, J. Evaluation of solvent effects in isotropic and anisotropic dielectrics and in ionic solutions with a unified integral equation method: theoretical bases, computational implementation, and numerical applications. J. Phys. Chem., 1997, 101, 10506. 29Amovilli, C.; Barone, V.; Cammi, R.; Cossi, M.; Mennucci, B.; Pomelli, C. S.; Tomasi J. Journal Advanced Quantum Chemistry, 1998, 32, 227. 30Tomasi, J.; Mennucci, B.; Cammi, R. Quantum mechanical continuum solvation models.Chemical Reviews, 2005, 105, 2999. 31Andrade, Renato R.; Silva, Clarissa O. da. On the Route of the Determination of Monosaccharides Conformations. Mini-reviews In Organic Chemistry, Universidade Federal Rural do Rio de Janeiro, Br 465, Km 47 - Serop?dica, Rio de Janeiro, Brazil, p.239-248, 2011. 32 Csonka, G.I. Proper basis set for quantum mechanical studies of potential energy surfaces of carbohydrates. J. Mol. Struct. (Theochem), 2002, 584,1-4; 33 Csonka, G.I., French, A. D., Johnson, G. P., Stortz, C. A. J. Chem. Theory Comp., 2009, 5, 679-692. 34 Goulart, P. N. Conforma??es mais est?veis da naftil xilose. 2011. Trabalho de Conclus?o de Curso (Monografia, Fisicoquimica) ? UFRRJ, RJ. 35 Stephens, P. J.; Devlin, F. J.; Cheeseman, J. R.; Frisch, M. J. Calculation of optical rotation using density functional theory. J. Phys. Chem. A, 2001, 105, 5356. 64 36 Gaussian 03, Revision C.01, Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Scuseria, G. E.; Robb, M. A.; Cheeseman, J. R.; Montgomery, Jr., J. A.; Vreven, T.; Kudin, K. N.; Burant, J. C.; Millam, J. M.; Iyengar, S. S.; Tomasi, J.; Barone, V.; Mennucci, B.; Cossi, M.; Scalmani, G.; Rega, N.; Petersson, G. A.; Nakatsuji, H.; Hada, M.; Ehara, M.; Toyota, K.; Fukuda, R.; Hasegawa, J.; Ishida, M.; Nakajima, T.; Honda, Y.; Kitao, O.; Nakai, H.; Klene, M.; Li, X.; Knox, J. E.; Hratchian, H. P.; Cross, J. B.; Bakken, V.; Adamo, C.; Jaramillo, J.; Gomperts, R.; Stratmann, R. E.; Yazyev, O.; Austin, A. J.; Cammi, R.; Pomelli, C.; Ochterski, J. W.; Ayala, P. Y.; Morokuma, K.; Voth, G. A.; Salvador, P.; Dannenberg, J. J.; Zakrzewski, V. G.; Dapprich, S.; Daniels, A. D.; Strain, M. C.; Farkas, O.; Malick, D. K.; Rabuck, A. D.; Raghavachari, K.; Foresman, J. B.; Ortiz, J. V.; Cui, Q.; Baboul, A. G.; Clifford, S.; Cioslowski, J.; Stefanov, B. B.; Liu, G.; Liashenko, A.; Piskorz, P.; Komaromi, I.; Martin, R. L.; Fox, D. J.; Keith, T.; Al-Laham, M. A.; Peng, C. Y.; Nanayakkara, A.; Challacombe, M.; Gill, P. M. W.; Johnson, B.; Chen, W.; Wong, M. W.; Gonzalez, C.; and Pople, J. A.; Gaussian, Inc., Wallingford CT, 2004. 37 Bochevarov, Art D. et al. Jaguar: A High-Performance Quantum Chemistry Software Program with Strengths in Life and Materials Sciences. International Journal Of Quantum Chemistry, 120 West 45th St, 17th Floor, New York, New York,, p.2110-2142, 2013. 38 Comunica??o pessoal com
dc.rights.driver.fl_str_mv info:eu-repo/semantics/openAccess
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.publisher.program.fl_str_mv Programa de P?s-Gradua??o em Qu?mica
dc.publisher.initials.fl_str_mv UFRRJ
dc.publisher.country.fl_str_mv Brasil
dc.publisher.department.fl_str_mv Instituto de Ci?ncias Exatas
publisher.none.fl_str_mv Universidade Federal Rural do Rio de Janeiro
dc.source.none.fl_str_mv reponame:Biblioteca Digital de Teses e Dissertações da UFRRJ
instname:Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron:UFRRJ
instname_str Universidade Federal Rural do Rio de Janeiro (UFRRJ)
instacron_str UFRRJ
institution UFRRJ
reponame_str Biblioteca Digital de Teses e Dissertações da UFRRJ
collection Biblioteca Digital de Teses e Dissertações da UFRRJ
bitstream.url.fl_str_mv http://localhost:8080/tede/bitstream/jspui/4161/4/2015+-+Paula+do+Nascimento+Goulart.pdf.jpg
http://localhost:8080/tede/bitstream/jspui/4161/3/2015+-+Paula+do+Nascimento+Goulart.pdf.txt
http://localhost:8080/tede/bitstream/jspui/4161/2/2015+-+Paula+do+Nascimento+Goulart.pdf
http://localhost:8080/tede/bitstream/jspui/4161/1/license.txt
bitstream.checksum.fl_str_mv 0aa4e23b844af201c30959d76e1f3018
7425dd18626ec3e1c7079c0e98a8b44a
67aaae66bf860815294081f9d5b97fae
7b5ba3d2445355f386edab96125d42b7
bitstream.checksumAlgorithm.fl_str_mv MD5
MD5
MD5
MD5
repository.name.fl_str_mv Biblioteca Digital de Teses e Dissertações da UFRRJ - Universidade Federal Rural do Rio de Janeiro (UFRRJ)
repository.mail.fl_str_mv bibliot@ufrrj.br||bibliot@ufrrj.br
_version_ 1797220327112048640