Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto

Detalhes bibliográficos
Ano de defesa: 2019
Autor(a) principal: Flores, Yesica Ramirez
Orientador(a): Não Informado pela instituição
Banca de defesa: Não Informado pela instituição
Tipo de documento: Dissertação
Tipo de acesso: Acesso aberto
dARK ID: ark:/26339/0013000016r49
Idioma: por
Instituição de defesa: Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
Programa de Pós-Graduação: Não Informado pela instituição
Departamento: Não Informado pela instituição
País: Não Informado pela instituição
Palavras-chave em Português:
MDE
TIN
Link de acesso: http://repositorio.ufsm.br/handle/1/17248
Resumo: Freshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way.
id UFSM_bfe8f8d604e4100325b0e4cdebec2f3d
oai_identifier_str oai:repositorio.ufsm.br:1/17248
network_acronym_str UFSM
network_name_str Manancial - Repositório Digital da UFSM
repository_id_str
spelling Estimativa de armazenamento de água em reservatórios através de sensoriamento remotoEstimate of water storage in reservoirs through remote sensingDisponibilidade hídricaImagem multiespectralMDETINWater availabilityMultispectral imageCNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLAFreshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way.Conselho Nacional de Pesquisa e Desenvolvimento Científico e Tecnológico - CNPqReservatórios de água doce fornecem serviços essenciais à população por meio do fornecimento de água potável, para uso doméstico, industrial, e uso agrícola. Dessa forma, encontrar meios adequados para o gerenciamento desse recurso é vital para sociedade atual. Porém o levantamento dessas informações esbarra nos elevados custos de coleta e na dificuldade de acesso as áreas. Entretanto, o uso de ferramentas do sensoriamento remoto mostra-se potencialmente aplicável para detecção e monitoramento de corpos de água, superando os problemas anteriormente citados. Dessa forma o trabalho objetivou avaliar o uso de ferramentas do sensoriamento remoto na identificação e determinação da capacidade de armazenamento de reservatórios de água doce para os municípios de Alegrete, Itaqui, Quaraí e Uruguaiana no Estado do Rio Grande do Sul - Brasil. Visando alcance dos desígnios propostos no trabalho, foram determinadas três situações para a escolha das imagens multiespectrais, sendo estas épocas de estiagem, cheias e períodos de uso intenso de água. Os dados dos sensores OLI e MSI (Landsat 8 e Sentinel-2B respectivamente) foram analisados e classificados utilizando Software ERDAS 2014® onde, por meio de filtro Laplaciano 3x3, obteve-se o realce de bordas facilitando a delimitação dos reservatórios. A ferramenta Arcscan do software ArcGIS 10.4.1 for Desktop Advanced foi utilizada para a vetorização dos alvos. Em contrapartida modelos de elevação SRTM e ALOS-PALSAR também foram utilizados para a identificação/detecção dos alvos. Posteriormente, foi procedido a caracterização dos reservatórios identificados, sendo possível calcular as variáveis Área, Volume e Profundidade dos reservatórios. Obteve-se assim a capacidade volumétrica e a disponibilidade de água para a área de estudo. Para o método de identificação automática de reservatórios utilizando imagens multiespectrais os dados obtidos com a imagem Sentinel 2B - MSI foi a que apresentou melhor resultado para área de estudo possibilitando a identificação de 1.517 reservatórios facilitando a identificação de reservatórios menores em comparação com as imagens Landsat 8 - OLI. Já para o método de detecção de reservatórios o modelo ALOS PALSAR identificou 1.510 reservatórios para a área de estudo, aliado a identificação de reservatórios de menor capacidade, em comparação com modelo SRTM. O volume médio disponível na área de estudo foi de 2.5 bilhões de metros cúbicos. Os resultados alcançados demonstram o potencial do uso de ferramentas de sensoriamento remoto na identificação e caracterização de recursos hídricos para os diversos fins. Constituindo uma ferramenta útil para quantificar a água disponível em reservatórios, permitindo que gestores, sejam eles ligados a agricultura ou a demanda urbana, possam gerir esse recurso da melhor forma possível.Universidade Federal de Santa MariaBrasilEngenharia AgrícolaUFSMPrograma de Pós-Graduação em Engenharia AgrícolaCentro de Ciências RuraisRobaina, Adroaldo Diashttp://lattes.cnpq.br/8629241691140049Pereira, Tonismar dos Santoshttp://lattes.cnpq.br/4636801615303022Miola, Alessandro Carvalhohttp://lattes.cnpq.br/6330335959668033Flores, Yesica Ramirez2019-07-02T13:24:33Z2019-07-02T13:24:33Z2019-02-28info:eu-repo/semantics/publishedVersioninfo:eu-repo/semantics/masterThesisapplication/pdfhttp://repositorio.ufsm.br/handle/1/17248ark:/26339/0013000016r49porAttribution-NonCommercial-NoDerivatives 4.0 Internationalinfo:eu-repo/semantics/openAccessreponame:Manancial - Repositório Digital da UFSMinstname:Universidade Federal de Santa Maria (UFSM)instacron:UFSM2019-07-03T06:01:08Zoai:repositorio.ufsm.br:1/17248Biblioteca Digital de Teses e Dissertaçõeshttps://repositorio.ufsm.br/PUBhttps://repositorio.ufsm.br/oai/requestatendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.bropendoar:2019-07-03T06:01:08Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)false
dc.title.none.fl_str_mv Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
Estimate of water storage in reservoirs through remote sensing
title Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
spellingShingle Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
Flores, Yesica Ramirez
Disponibilidade hídrica
Imagem multiespectral
MDE
TIN
Water availability
Multispectral image
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
title_short Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
title_full Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
title_fullStr Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
title_full_unstemmed Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
title_sort Estimativa de armazenamento de água em reservatórios através de sensoriamento remoto
author Flores, Yesica Ramirez
author_facet Flores, Yesica Ramirez
author_role author
dc.contributor.none.fl_str_mv Robaina, Adroaldo Dias
http://lattes.cnpq.br/8629241691140049
Pereira, Tonismar dos Santos
http://lattes.cnpq.br/4636801615303022
Miola, Alessandro Carvalho
http://lattes.cnpq.br/6330335959668033
dc.contributor.author.fl_str_mv Flores, Yesica Ramirez
dc.subject.por.fl_str_mv Disponibilidade hídrica
Imagem multiespectral
MDE
TIN
Water availability
Multispectral image
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
topic Disponibilidade hídrica
Imagem multiespectral
MDE
TIN
Water availability
Multispectral image
CNPQ::CIENCIAS AGRARIAS::ENGENHARIA AGRICOLA
description Freshwater reservoirs provide essential services to the population by providing drinking water for domestic, industrial, and agricultural use. In this way, finding appropriate means to manage this resource is vital for today's society. However, the collection of this information is an obstacle to high collection costs and difficult access to troubled areas. However, the use of remote sensing tools is potentially applicable for detection and monitoring of water bodies, overcoming the aforementioned problems. The objective of this work was to evaluate the use of remote sensing tools in the identification and determination of storage capacity of fresh water reservoirs for the municipalities of Alegrete, Itaqui, Quaraí and Uruguaiana in the State of Rio Grande do Sul, Brazil. Aiming at reaching the objectives proposed in the work, three situations were chosen for the choice of multispectral images, being these droughts, floods and periods of intense water use. Data from the OLI and MSI sensors (Landsat 8 and Sentinel-2B respectively) were analyzed and classified using ERDAS 2014® Software where by means of a 3x3 Laplacian filter the edge enhancement was facilitated, facilitating the delimitation of the reservoirs. The ArcScan tool in ArcGIS 10.4.1 for Desktop Advanced software was used for vectoring the targets. In contrast, elevation models SRTM and ALOS-PALSAR were also used for the identification / detection of the targets. Afterwards, the identified reservoirs were characterized, and it was possible to calculate the variables Area, Volume and Height of the reservoirs. Volumetric capacity and water availability were obtained for the study area. For the method of automatic identification of reservoirs using multispectral images, the data obtained with the Sentinel 2B-MSI image was the one that presented the best result for the study area, allowing the identification of 1.517 reservoirs, facilitating the identification of smaller reservoirs compared to Landsat 8 images - OLI. The ALOS PALSAR model identified 1.510 reservoirs for the study area, together with the identification of smaller reservoirs, compared to the SRTM model. The mean volume available in the study area was 2.5 billion cubic meters. The results obtained demonstrate the potential of the use of these remote sensing tools in the identification and characterization of water resources for the various purposes. Providing a useful tool to quantify available water in reservoirs, allowing managers, whether linked to agriculture or urban demand, to manage this resource in the best possible way.
publishDate 2019
dc.date.none.fl_str_mv 2019-07-02T13:24:33Z
2019-07-02T13:24:33Z
2019-02-28
dc.type.status.fl_str_mv info:eu-repo/semantics/publishedVersion
dc.type.driver.fl_str_mv info:eu-repo/semantics/masterThesis
format masterThesis
status_str publishedVersion
dc.identifier.uri.fl_str_mv http://repositorio.ufsm.br/handle/1/17248
dc.identifier.dark.fl_str_mv ark:/26339/0013000016r49
url http://repositorio.ufsm.br/handle/1/17248
identifier_str_mv ark:/26339/0013000016r49
dc.language.iso.fl_str_mv por
language por
dc.rights.driver.fl_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
info:eu-repo/semantics/openAccess
rights_invalid_str_mv Attribution-NonCommercial-NoDerivatives 4.0 International
eu_rights_str_mv openAccess
dc.format.none.fl_str_mv application/pdf
dc.publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
publisher.none.fl_str_mv Universidade Federal de Santa Maria
Brasil
Engenharia Agrícola
UFSM
Programa de Pós-Graduação em Engenharia Agrícola
Centro de Ciências Rurais
dc.source.none.fl_str_mv reponame:Manancial - Repositório Digital da UFSM
instname:Universidade Federal de Santa Maria (UFSM)
instacron:UFSM
instname_str Universidade Federal de Santa Maria (UFSM)
instacron_str UFSM
institution UFSM
reponame_str Manancial - Repositório Digital da UFSM
collection Manancial - Repositório Digital da UFSM
repository.name.fl_str_mv Manancial - Repositório Digital da UFSM - Universidade Federal de Santa Maria (UFSM)
repository.mail.fl_str_mv atendimento.sib@ufsm.br||tedebc@gmail.com||manancial@ufsm.br
_version_ 1847153503226560512